This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SILVER COORDINATION AND ORGANOMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

Clive E. Holloway^a; Milan Melnik^b; W. Andrew Nevin^c; Wei Liu^d ^a Department of Chemistry, York University, Ontario, Canada ^b Department of Inorganic Chemistry, Slovak Technical University, Bratislava, Slovak Republic ^c Central Research Laboratories, Kobe, Japan ^d Department of Chemistry, Yangzhou Teachers' College, Yangzhou, Jiangsu, Peoples, Republic of China

To cite this Article Holloway, Clive E., Melnik, Milan, Nevin, W. Andrew and Liu, Wei(1995) 'SILVER COORDINATION AND ORGANOMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA', Journal of Coordination Chemistry, 35: 1, 85 – 178 To link to this Article: DOI: 10.1080/00958979508033088

URL: http://dx.doi.org/10.1080/00958979508033088

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1995, Vol 35, pp. 85–178 Reprints available directly from the publisher Photocopying permitted by license only © 1995 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license by Gordon and Breach Science Publishers SA Printed in Malaysia

REVIEW

SILVER COORDINATION AND ORGANOMETALLIC COMPOUNDS: CLASSIFICATION AND ANALYSIS OF CRYSTALLOGRAPHIC AND STRUCTURAL DATA

CLIVE E. HOLLOWAY*

Department of Chemistry, York University, 4700 Keele St., North York, M3J 1P3, Ontario, Canada

MILAN MELNIK

Department of Inorganic Chemistry, Slovak Technical University, CS 81237, Bratislava, Slovak Republic

W. ANDREW NEVIN

Central Research Laboratories, Kaneka Corporation, 2-80, 1-Chome, Yoshida-Cho, Hyogo-Ku, Kobe, Japan 652

and WEI LIU

Department of Chemistry, Yangzhou Teachers' College, Yangzhou, Jiangsu, Peoples Republic of China

(Received July 2, 1994; in final form December 12, 1994)

This review summarizes the data for almost six hundred silver coordination and organometallic compounds, with the silver atom occurring in oxidation states of +1, +2, and two examples of +3 in a square-planar environment. The +2 oxidation state is found in digonal, square-planar, tetrahedral and hexa-coordinated environments. The +1 oxidation state is by far the most common in various geometries from two to seven. The nuclearity range from mono- to polynuclear utilizing a variety of ligand types. There are several examples of distortion isomerism, and a few examples of polymerization isomerism. Correlations between bond lengths, bond angles, ligating atom radius and silver oxidation state are discussed.

KEYWORDS: review, silver, crystallography, structures

^{*} Author for correspondence.

CONTENTS

- 0. Abbreviations
- 1. Introduction
- 2. Mononuclear Silver Compounds
 - 2.1 Coordination numbers one and two
 - 2.2 Coordination number three
 - 2.3 Coordination number four
 - 2.4 Coordination number five
 - 2.5 Coordination number six and higher
- 3. Binuclear Silver Compounds
 - 3.1 Coordination number two
 - 3.2 Coordination number three
 - 3.3 Coordination number four
 - 3.4 Coordination number five and higher
- 4. Trinuclear Silver Compounds
- 5. Tetranuclear Silver Compounds
 - 5.1 Coordination number two
 - 5.2 Coordination number three
 - 5.3 Coordination number four
- 6. Oligonuclear Silver Compounds
- 7. Polynuclear Silver Compounds
 - 7.1 Coordination number two
 - 7.2 Coordination number three
 - 7.3 Coordination number four
 - 7.4 Coordination number five
 - 7.5 Coordination number six and higher
- 8. Conclusions
 - Acknowledgements

References

0. Abbreviations

absg	o-aminobenzenesulphonyl glycine
adpo	5-aza-2, 8-dioxa-1-pnictabicyclo[3,3,0]octa-2,4,6-triene
anph	acenaphthylene
bct	3,4:3",4"-bis(ethylenedithio)-2,2'5,5'-tetrathiafulvalenium
bdtp	1,5-bis(3,5-dimethylpyrazol-1-yl)-3-thiapentane
bp	bis[di(tert-butyl)phosphinomethyl]benzo[c] phenanthrene
bpy	2,2'-bipyridine
bgtp	1,3-bis(8-quinolylthio)propane
Bu ^t dab	1,4-di-t-butyldiazabuta-1,3-diene
bzttcp	13,14-dibenzo-1,4,8,11-tetrathiacyclopentade-13-ene
c	cubic
cap	caproate

$CF_3CN_5S_3$	7-(trifluoromethyl)-1,3,5-trithia-2,4,6,8,9-penta-azabicyclo[3.3.1] nona-1(9),2,3,5,7-penteene
C ₂ H ₂ NS ₂	2-mercantothiazoline
$C_{2}H_{2}S_{2}$	1 3 5-trithian
$C_{H_0}O_{2}$	1 4-dioxane
	1 4-oxathiane
C ₄ H ₈ O5	adeninium
C _t H _S	4 5-di(methylthio)-1 3-dithia-2-thione-4-cyclopentene
C.H.N.	nyridine-4-carbonitrile
$C_{1}H_{1}NCO_{2}$	nicotinate
$C_{14}N_{2}$	benztriazole
C.H.OS	1 4-oxathiane
C_{18}	cyclosarcosylsarcosine
$C_{10} V_{2} V_{2}$	pentamethylenetetrazole
$C_{H_10}N_4$	N-cyclohexylamide
C.H.S	cyclohexanethiolate
C.H.,S.	1 4 7-trithiacyclononane
C H N	ethylenehis(higuamide)
C_{-H}	8 9 10-trinorbornadiene
$C_{1}H_{8}$	1 8-nanhthyridine
$C_{8}H_{6}V_{2}$	1.2.5.6-cvclooctatetrene
	$e_{x_0,tricyclo[3,2,1,0^{2,4}]oct_6-ene}$
1 5-C-H	1.5-cvclooctadiene
C.H.	indene
CoHeo	1 4 7-cyclononatriene
C ₀ H ₁₀ S ₂	1.5.9-trithiacyclododecane
$C_0H_{21}N_2$	1 4 7-triazacyclononane
C _o H _o ,N _o	N N N N N' N' -hexamethyl-1 3-propylenediamine
$C_{10}H_{\ell}(CO_{2})_{2}$	1 8-naphthalenedicarboxylate
$C_{10}H_{7}CS_{2}$	a-dithionaphthoate
$C_{10}H_{0}$	naphthalene
CioHoNLOoS	sulphadiazine
C ₁₀ H ₁₀	fullvalene
CioHio	1.6-cvclodecadivne
$C_{10}H_{10}$	cvclodecene
C ₁₀ H ₁₀ OS ₄	3-oxo-1.5.8.11-tetrathiacyclotridecane
$C_{10}H_{20}S_{\epsilon}$	1.4.7.10.13-pentathiacyclopentadecane
$C_{10}H_{20}S_6$	1.3.6.9.11.14-hexathiacvclohexadecane
$C_{10}H_{20}N_2OS_2$	1-oxa-7.10-diaza-4.13-dithiacvclopentadecane
$C_{10}H_{42}N_2S_2$	3.3.7.7.11.11.15.15-octamethyl-1.9-dithia-5.
-104222	13-diazacyclohexadecane
$C_{11}H_8N_4O_2$	10-methylisoalloxazine
$\vec{C_{11}H_{15}As}$	o-allylphenyldimethylarsine
$C_{11}H_{30}N_{3}$	N,N,N,N',N",N",-heptamethyl-N-hydrodiethylenetriamine
$C_{12}H_9NO$	4-benzoylpyridine

$C_{12}H_{10}$	benzocyclooctatetraene
$C_{12}H_{16}$	1,7-cyclodecadiyne
$C_{12}H_{16}S_3$	2,5,8-trithia[9]ortho-benzenophane
$C_{12}H_{17}N_{3}S$	N-(diethylaminothiocarbonyl)benzamidine
$C_{12}H_{18}$	1,5-dimethylcyclodeca-1,5,7-triene
$C_{12}H_{18}S_5$	2,5,7,10-tetrathia[12](2,5)thiophenophane
$C_{12}H_{24}O_{5}S$	1,4,7,10,13-pentaoxa-16-thiacyclooctadecane
$C_{12}H_{24}S_{6}$	1.4.7.10.13.16-hexathiacyclooctadecane
$C_{12}H_{24}N_{25}S_{4}$	1.4.10.13-tetrathia-7.16-diazacyclooctadecane
$C_{12}H_{20}N_4S_2$	[18]-N ₄ S ₂ coronand
$C_{12}H_{13}N_{2}S$	thiophene-2-carbaldehvde imine
C ₁₃ H ₂₀	1.5.9-cvclotridecatriene
C. H.o	anthracene
$C_{14} H_{20}$	1.8-cvclotetradecadivne
$C_1 H_{20}$	1.1.4.4-tetramethyl-cis-cyclodec-7-ene
$C_1 H_{26}$	2 2-dimethylbut-3-envl methylsulphide
$C_1 H_{28} S_2$	[9]-NS. azacoronand
$C_{14}H_{28}H_{2}S_{4}$	7 16-dimethyl-1 4 10 13-tetrathia-7 16-diazacyclooctadecane
$C_{14}H_{30}V_{2}J_{4}$	N N'-di-n-tolylformamidinate
C H OCO	3-hydroxy_4_nhenyl_2_2_3_trimethylcyclohevanecarboxylate
$C_{15}H_{21}OCO_2$	6 0 12 triova 3 15 dithia 21 azabiovelo [15 3 1]hemicosa 1(21)
C ₁₅ II ₂₃ IIO ₃ S ₂	17,19-triene
$C_{15}H_{24}$	β-gorgonene
$C_{16}H_{22}N_4S_2$	N-[N-(5-methyl-thenylideneO-L-methionyl]histamine
C ₁₆ H ₁₆	1.4-benzodioxan
$C_{17}H_{27}N_{\epsilon}$	guinguedentate macrocyclic ligand
$C_{10}H_{24}S_{4}$	1.4.7.10.13.16-hexathiacvclooctadecane
$C_{18} = 24 = 0$	5.7.7.12.14.14-hexamethyl-1.4.8.11-tetraazatricyclo[9.3.1.1 ^{4,8}]
-18304	hexadecane
$C_{19}H_{17}N_{7}Cl$	2,6-diacetylpyridine-bis(6-chloro-2-pyridylhydrazone)
$C_{20}H_{18}$	sac-[2](1,5)naphthalino[2]paracyclophane
$C_{20}H_{24}O_{6}$	di(benzo-18-crown-6)
$C_{20}H_{27}N_{3}S_{2}$	1,12,15-triaza-3,4:9,10-dibenzo-5,8-dithiacycloheptadecane
$C_{21}H_{21}N_7O_2$	1,11-bis(2'-hydroxyethyl)-4,8:12,16:17,21-trinitrilo-1,2,10,11-
	tetraazacyclohemicosa-2,4,6,9,12,14,18,20-octaene
$C_{24}H_{24}$	[2,2,2]paracyclophane
$C_{24}H_{32}$	pentacyclo[12.2.2.2 ^{2,5} .2 ^{6,9} .2 ^{10,13}]-1,5,9,13-tetracosatetraene
$C_{24}H_{32}N_4O_2S_2$	3,12,19,28-tetraaza-6,9,22,25-tetraoxa-33,34-
24 52 4 2 2	dithiatricyclo[28.2.1.1 ^{14,17}]tetratriaconta-2,12,14,16,18,28,30,
	32-octaene
$C_{25}H_{17}N_5$	2,2':6,2':6",2"':6"',2""-quinquepyridine-2,15-dimethyl-7,
-	10-dithia-3,14,20-triazabicyclo[14,3,1]icosa-1(20),2,14,16,
	18-pentaene
$C_{25}H_{24}$	[23](1,4)-cyclophane
$C_{28}H_{34}P_2$	2,11-bis(dialkylphosphinomethyl)benzo[c]phenanthrene

$C_{29}H_{37}NO_5$	phomin
$C_{30}H_{30}$	[26](1,2,4,5)cyclophane
$C_{30}H_{35}N_{2}O_{4}$	10-methyl-9-[4-(1,4,7,10-tetraoxa-13-aza-13-cyclopentadecyl)phenyl]-
50 55 2 4	acridinium
$C_{30}H_{38}N_4S_4$	2,2'bis{4-(2-(tert-butylthio)ethyl)thio)-2-imidazolyl} biphenyl
$C_{34}H_{53}O_8$	lasalocid A, (antibiotic X-537A)
$C_{34}H_{59}O_{10}$	lysocellin
$C_{36}H_{42}N_8$	N ₈ cryptand
$C_{38}H_{46}N_{10}$	N,N-bis(2-aminoethyl)-2-(aminomethyl)pyridine
$C_{38}H_{57}N_8$	N,N-bis(2-aminopropyl)-2-methoxyethylamine
$C_{42}H_{55}N_{10}$	N,N-bis(3-aminopropyl)-2-(aminomethyl)pyridine
$C_{aa}H_{7a}O_{1a}$	emericid
$C_{46}H_{60}N_8O_2$	N,N-(3-aminopropyl)-2-methoxybenzylamine
$C_{47}H_{87}O_{14}$	ionophore X206
C_2O_4	oxalate
cre	creatinine
cry	cryptate
$cy(mt)_2$	cyclo(L-methionyl-L-methionyl)
dbp	dibenzylphosphate
dea	diethylamine
dep	diethylphosphate
dmb	1,8-diisocyano-p-methane
dmcn	3,7-dimethylenebicyclo[3,3,1]nonane
dmpe	bis(dimethylphosphino)ethane
dmpte	bis(2,6-dimethoxyphenylthio)ethane
dmto	1,3-dimethyl-2,4,5,6(1H,3H)-pyrimidinetetrazene-5-oximate
dpac	bis(diphenylarsino)ethane
dppe	bis(diphenylphosphino)ethane
dpph	diphenyl(2-pyridyl)phosphine
dppm	bis(diphenylphosphino)methane
dppp	bis(diphenylphosphono)propane
dppph	bis(diphenylphosphinophenylphosphine)
dtdc	4,7-dithiadecane-1,10-dicarboxylate
dtl	dithiolactone
dtoco	1,10-dithia-4,7,13,16-tetraoxacyclooctadecane
dtt	1,3-dithiane-1,1,3,3-tetraoxide
dttp	2,6-dimethyl-3,15,21-triaza-6,9,12-trithiabicyclo[15.3.1]hemicosa-
•	1(21),2,15,17,19-pentaene
Et	ethyl
Et ₂ btu	1,1-diethyl-3-benzoylthiourea
fla	flavine
glyH	glycine
gr	grisorixin
hmta	hexamethyltetraamine
htcod	1,4,7,10,13,16-hexathiacyclooctadecane

C.E. HOLLOWAY et a	al.
--------------------	-----

iot 2-imino-4-oxo-1,3-thiazolidine LC 3,4:12,13-dibenzo-1,15-diaza-5,11-dioxa-cyclononadeca-1,14-diene LN ₅ macrocycle, prepared from 2,6,-diacetylpyridine and 1,9-diamino-3, 7,-diazanonane m monoclinic Me methyl Me ₃ aca trimethylammoniaacetate Me ₃ apr trimethylammoniapropinonate Mead methyl-9-adenine Me ₄ bpy 4,4',6,6'-tetramethyl-2,2'-bipyridine Mecyt 1-methylcytosine 9-Mehe 9-methylhypoxantine meB monensin B p-MeOacp p-methoxyacetophenone mes mesityl Me ₄ tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me ₆ tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane Metu N-methylthiourea mgly cyclo-1-methionylglycine ml (R,S)-1,2-(5-Me-thio-2-CH = N) ₂ -cyclohexadienyl mor morpholine mpsa [2-(6-methyl)pyridyl]trimethylsilylamido 4-NO ₂ pyNO 4-nitropyridine-N-oxide OHou 8-hydroxynuinoline
LC $3,4:12,13$ -dibenzo- $1,15$ -diaza- $5,11$ -dioxa-cyclononadeca- $1,14$ -dieneLN5macrocycle, prepared from $2,6$,-diacetylpyridine and $1,9$ -diamino- $3,$ 7,-diazanonanemmonoclinicMemethylMe_acatrimethylammoniaacetateMeadmethyl-9-adenineMe4bpy $4,4',6,6'$ -tetramethyl- $2,2'$ -bipyridineMecyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_tacd $1,4,8,11$ -tetramethyl- $1,4,8,11$ -tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml $(R,S)-1,2-(5-Me-thio-2-CH = N)_2$ -cyclohexadienylmormorpholinempsa $[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2ppyNO4-nitropyridine-N-oxideOHou8-hydroxyauinoline$
$ LN_{5} \qquad macrocycle, prepared from 2,6,-diacetylpyridine and 1,9-diamino-3, 7,-diazanonane m monoclinic Me methyl Me_{3}aca trimethylammoniaacetate Me_{3}apr trimethylammoniapropinonate Mead methyl-9-adenine Me_{4}bpy 4,4',6,6'-tetramethyl-2,2'-bipyridine Mecyt 1-methylcytosine 9-Mehe 9-methylhypoxantine meB monensin B p-MeOacp p-methoxyacetophenone mes mesityl Me_{4}tacd 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane Metu N-methylthiourea mgly cyclo-1-methionylglycine ml (R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienyl mor morpholine mpsa [2-(6-methyl)pyridyl]trimethylsilylamido 4-NO_{2}pyNO 4-nitropyridine-N-oxide Othou &-hydroxyaouiooline Meto N-methylthiourea Meto N-methylthiourea Meto N-methylhypoxide Othou &-hydroxyaouiooline N-0xide Othou &-hydroxyaouiooline N-0xide N-0$
7,-diazanonanemmonoclinicMemethylMe_acatrimethylammoniaacetateMe_aprtrimethylammoniapropinonateMeadmethyl-9-adenineMe_dbpy4,4',6,6'-tetramethyl-2,2'-bipyridineMcyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_4tacd1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-bydroxyouinoline
mmonoclinicMemethylMe_aacatrimethylammoniaacetateMe_aaprtrimethylammoniapropinonateMeadmethyl-9-adenineMe_dbpy4,4',6,6'-tetramethyl-2,2'-bipyridineMccyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_4tacd1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
MemethylMe_3acatrimethylammoniaacetateMe_3aprtrimethylammoniapropinonateMeadmethyl-9-adenineMe_dbpy $4,4',6,6'$ -tetramethyl-2,2'-bipyridineMecyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_4tacd $1,4,8,11$ -tetramethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml (R,S) -1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-bydroxyouipoline
Me_3acatrimethylammoniaacetateMe_3aprtrimethylammoniapropinonateMeadmethyl-9-adenineMe_4bpy $4,4',6,6'$ -tetramethyl-2,2'-bipyridineMecyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_4tacd $1,4,8,11$ -tetramethyl-1, $4,8,11$ -tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyounoline
Me_3apr trimethylammoniapropinonate $Mead$ methyl-9-adenine Me_4bpy $4,4',6,6'$ -tetramethyl-2,2'-bipyridine $Mecyt$ 1-methylcytosine 9 -Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesityl Me_4tacd $1,4,8,11$ -tetramethyl-1,4,8,11-tetraazacyclotetradecane Me_6tacd $5,5,7,12,12,14$ -hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml (R,S) -1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyauinoline
Meadmethyl-9-adenine Me_4bpy $4,4',6,6'$ -tetramethyl-2,2'-bipyridine $Mecyt$ 1-methylcytosine 9 -Mehe 9 -methylhypoxantinemeBmonensin B p -MeOacp p -methoxyacetophenonemesmesityl Me_4tacd $1,4,8,11$ -tetramethyl-1,4,8,11-tetraazacyclotetradecane Me_6tacd $5,5,7,12,12,14$ -hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml (R,S) -1,2-(5-Me-thio-2-CH = N) ₂ -cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO ₂ pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
Me_4bpy $4,4',6,6'$ -tetramethyl-2,2'-bipyridineMecyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesityl Me_4tacd $1,4,8,11$ -tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd $5,5,7,12,12,14$ -hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml (R,S) -1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
Mecyt1-methylcytosine9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesitylMe_4tacd1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecaneMe_6tacd5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml (\mathbf{R},\mathbf{S}) -1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
9-Mehe9-methylhypoxantinemeBmonensin Bp-MeOacpp-methoxyacetophenonemesmesityl Me_4tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
meBmonensin Bp-MeOacpp-methoxyacetophenonemesmesityl Me_4tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyouinoline
p-MeOacpp-methoxyacetophenonemesmesityl Me_4tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
mesmesityl Me_4tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
Me_4tacd 1,4,8,11-tetramethyl-1,4,8,11-tetracyclotetradecane Me_6tacd 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)_2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO_2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
Me_6tacd $5,5,7,12,12,14$ -hexamethyl-1,4,8,11-tetraazacyclotetradecaneMetuN-methylthioureamglycyclo-1-methionylglycineml $(R,S)-1,2-(5-Me-thio-2-CH = N)_2$ -cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
MetuN-methylthioureamglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
mglycyclo-1-methionylglycineml(R,S)-1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquinoline
ml(R,S)-1,2-(5-Me-thio-2-CH = N)2-cyclohexadienylmormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquipoline
mormorpholinempsa[2-(6-methyl)pyridyl]trimethylsilylamido4-NO2pyNO4-nitropyridine-N-oxideOHou8-hydroxyquipoline
mpsa [2-(6-methyl)pyridyl]trimethylsilylamido 4-NO ₂ pyNO 4-nitropyridine-N-oxide OHou 8-hydroxyguinoline
4-NO ₂ pyNO 4-nitropyridine-N-oxide OHou 8-hydroxyguinoline
OHau 8-hydroxyguinoline
orige onjoionjquinointe
or orthorhombic
otta 1-oxo-1,2 ⁴ ,2,4 λ ⁴ ,3,5-trithiadiazole
pa 2-pyridyleneaniline
pctt pentacyclo[12,2,2,2 ^{2,5} ,2 ^{6,9} ,2 ^{10,13}]-1,5,9,13-tetracosatetrene
pdp 1-phenyl-3,5-dimethylpyrasole
peA polytherin A
pfc pefloxacin; 1-ethyl-1,4-dihydro-7-(4-methyl-1-
piperazinyl)-4-oxo-3-quinolinecarboxylate
Ph phenyl
pic picrate
pip piperidine
Pmes ₃ tris(mesityl)phosphine
pmqu 2-phenyl-8-mercaptoquinolinate
pp bis(diphenylphosphinomethyl)benzo[c]phenanthrene
ppyp phenyl-(2-pyridyl)-phosphane
PrS(CH ₂) ₂ SPr 1,2-bis(propylthio)ethane
pta (phenylthio)ethanoate
py pyridine
pyac pyridinioacetate
pycac 3-carboxylato-1-pyridinioacetate

90

pypr	pyridiniopropionate
rfl	riboflavine
sa	2-salicylamide-O-acetate
saca	sulphacetamide
$S_4N_4H_4$	tetrasulphur tetraimide
ste	stearate
sui	succinimide
tacd	1,4,8,11-tetraazacyclotetradecane
tbc	1,2:5,6:9,10-tribenzocyclododeca-1,5,9-triene-3,7,11-triyne
tch	thiocarbonohydrazide
tg	tetragonal
thf	tetrahydrofuran
tht	tetrahydrothiophene
tmb	2,5-dimethyl-2,5-diisocyanohexane
tmpp	tris(2,4,6-trimethoxyphenyl)phosphine
tosco	α -4,7,13,16-tetraoxo-1,10-disulphocyclooctadecane
tpp	tetraphenylporphyrine
tr	triclinic
trg	trigonal
triphos	1,1,1-tris(diphenylphosphinomethyl)ethane
tsc	thiosemicarbazide
ttf	tetrathiafulvalene
tt(9)ob	2,5,8-trithia[9]-o-benzenophane
ttof	8-thiatheophylline
tu	thiourea

1. INTRODUCTION

Silver is quite widely distributed in the environment and appears to have certain uniquely useful properties. The chemistry of silver continues to be a rigorous and diverse area of study, covering coordination complex, organometallic and solid state chemistry. Several review articles have been published during the last few years dealing with various aspects of the solid state chemistry of silver. For example, an analysis of 22 crystal structures of Ag(I) compounds with hard bases showed¹ that the occurrence of a red colouration is related to the coordination number of the silver atoms. The colourless compounds have coordination numbers of 1 or 2, whereas the red compounds always show coordination number 3 or 4. A survey of the literature on organosilver chemistry up to April 1969 was publsihed in 1970.² Coordination of compounds of unsaturated and aromatic compounds with silver salts, either in aqueous solution or the solid state, have been studied extensively.³ Silver(I) oxides with a high ratio of cations to oxygen have been shown to have unusual structural features with respect to the arrangement of the silver atoms.⁴ Some silver chalcogenides have been summarized in a separate review.⁵

C.E. HOLLOWAY et al.

There have been many structural studies of silver compounds included in annual review over the last few years,⁶ but no overall systematic study and classification of these structures yet exists. The purpose of this review is to provide such an overview for structures up to the end of 1991. There are over 600 structures and they are discussed in terms of the nuclearity and coordination number of the silver atoms. The compounds are listed in order of increasing coordination number, increasing complexity of the coordination sphere and increasing covalent radius of the principal coordinating atom. Under varying conditions silver has been isolated with coordination numbers from one to ten, with four being the most common. Some interesting differences between Ag(I), Cu(I) and Au(I) are observed and are discussed in this presentation.

2. MONONUCLEAR SILVER COMPOUNDS

2.1 Coordination numbers one and two

X-ray analysis of colourless air stable $Ag(2,4,6-Ph_3C_6H_2)$ shows⁷ that the aryl ligand coordinates to the silver atom through one of its ring carbon atoms, giving the silver an unusual coordination number of one. The Ag-C distance of 190.2(5) pm is the shortest of such distances found in organosilver derivatives, and is slightly longer than that of a similar copper(I) complex of 189.0(6) pm.⁷ This would be expected on the basis of the larger covalent radius of silver (153 pm) vs. copper (138 pm).

Structural data for mononuclear silver compounds with coordination number two are listed in Table 1. There are over forty such derivatives with the two geometries of linear and bent, of which the former is by far the most common. Unidentate N-donor ligands are the most common, building up a homogenous coordination environment about the silver(I) atoms. There is one example of a silver(II) derivative.¹⁷ The mean Ag-L bond distance increases as the covalent radius of the coordinated atom increases. Table 1A shows the mean Ag(I)-L distances, and it is observed that they are longer than those of the comparable Cu(I)⁴² and Au(I)⁴³ values. The mean M-L distances increase with the increasing covalent radius of the metal: Cu(138 pm) < Au (143 pm) < Ag (153 pm). The L-Ag(I)-L angles are in the range 180–145°, which is somewhat wider than that found for the Cu(I) and Au(I) derivatives, 180–154° and 180–155°, respectively. The compound Ag(C₆F₅)(CH₂PPh₃)²⁷ exists in two isomeric forms, triclinic and

The compound $Ag(C_6F_5)(CH_2PPh_3)^{27}$ exists in two isomeric forms, triclinic and monoclinic, which differ mostly by degree of distortion. In several other derivatives^{8,9,19,20,24,28,33,37} two crystallographically independent molecules are present, which again differ by degree of distortion. The coexistence of two or more species of this type within the same crystal is typical of the general class of distortion isomerism.⁴⁴ A similar set of examples has been found for Cu(I)⁴² and Au(I)⁴³ derivatives.

2.2 Coordination number three

Structural data for mononuclear silver compounds with coordination number three are given in Table 2, where it can be seen that only oxidation state +1 occurs. A

Compound	Cryst. cl. Space gr	a [pm]	α[°] β[°]	Chromo-		M-L	L-M-L	Ref.
	Z	<i>c</i> [pm]	γ́[°]	photo		[pm]	[°]	
$Ag^{I}(2,4,6-Ph_{3}C_{6}H_{2})$	m $P2_1/c$	1063.6(2) 1510.5(4)	113.55(2)	AgC	Сь	190.2(5)		7
[Ag ^I (NH ₃) ₂]NO ₃ ^c	or Pnmm	1253.4(4) 1057.3(2) 811.0(2)		AgN_2	Ν	215(2,0)	180	8
[Ag ^I (NH ₃) ₂]NO ₃ ^c	4 or	628.6(1) 808.8(3)		$\begin{array}{c} AgN_2 \\ AgN_2 \end{array}$	N N	218(2,0) 211.6(10)	180 180	9
(at 223 K)	Pnnm 4 or	1041.6(5) 626.1(2) 1186.4(3)		AgN ₂ AgN ₂	N N	212.1(10)	180 170 0(4)	10
$[Ag_2SeO_3N(NH_3)_3]2H_2O$	$P2_12_12_1 4$	1455.0(3) 643.3(2)		AgN ₂	S	ee Table 15	170.0(4)	10
$[Ag^{I}(2,6-Me_{2}py)_{2}]ClO_{4}]$	tg I4 ₁ /acd 9	1523.4(3) 1442.8		AgN ₂	N	216.6(4,0)	180.0	11
$[Ag^{I}(2,6-Me_{2}py)_{2}]NO_{3}]$	m P2 ₁ /n	1323.5(3) 1428.0(3) 828.4(3)	94.54(2)	AgN ₂	N	218.7(6,5)	169.3(2)	11
$[Ag^{I}(2,6-Me_{2}py)_{2}]BF_{4}]$	tg I4 ₁ /acd	1506.9(4) 1439.1(3)		AgN_2	N	216.3(7,0)	18000	12
Ag(NCCl) ₂]SbF ₆	m^{1} P2 ₁ /n	777.9(3) 887.7(4) 824.0(4)	113.34(3)	AgN ₂	N	214.0(4,0)	180	13
$[Ag^{I}(cre)_{2}]ClO_{4} \cdot 2H_{2}O$	2 m P2/c 2	1140.5(2) 605.2(2) 1232.5(2)	95.95(1)	AgN_2	N	210.0(3,0)	177.2(1)	14
$(NMe_4)[Ag_1(NCO)_2]$	or Pnma 4	1086.7(6) 661.4(5) 1385.2(7)		AgN ₂	N	204.2(13,27)	177.2(5)	15
[Ag ^I (lm] ₂]NO ₃	or $P2_12_12_1$	1092.7(2) 1821.5(5) 499.9(1)		AgN ₂	N	212.6(8,6)	172.0(3)	16
[Ag ^{II} (lmH] ₂]NO ₃	or $P2_12_12_1$	1094(1) 1810(2) 510(1)		AgN ₂	N	212(-,0)	172	17
$[Ag^{I}(9-Mehx)_{2}]NO_{3} \cdot 2H_{2}O$	tr P1 2	998.5(3) 1465.5(4) 660.6(2)	107.26(3) 95.92(3) 96.71(3)	AgN ₂	N	215.1(7,4)	175.1(3)	18
$[Ag^{I}(9-Mehx)_{2}]NO_{3} \cdot ClO_{4}H_{2}O^{c}$	tr P1 4	927.1(3) 1018.7(7) 1912.4(7)	91.17(4) 94.08(3) 93.78(4)	AgN ₂	N	213(1,0)	173.1(4)	19
Na[Ag ^I (suc) ₂]5H ₂ O ^c	or Cmc2	685.6(5) 2174(1)	, , , , , , , , , , , , , , , , , , ,	AgN ₂	N	207(1,1)	not given	20
$[\mathrm{Ag}^{\mathrm{I}}(\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{N}_{2})_{2}]\mathrm{NO}_{3}$	8 tr P1 2	2058.9(6) 2795.4(7) 635.4(2) 371.0(1)	87.55(3) 86.21(2) 89.35(2)	AgN ₂ AgN ₂	N N	208(1,1) 220.9(4,6)	162.2(2)	21
$[Ag^{I}(C_{12}HgNO)_{2}]NO_{3} \cdot H_{2}O$	tr P1 2	1703.6(5) 869.1(3) 784.9(3)	107.74(2) 97.53(2) 91.11(2)	AgN ₂	N	214.7(3,1)	175.3(1)	21
$[Ag^{I}(C_{13}H_{13}N_{2}S)_{2}] (CF_{3}SO_{3})$	m C2 4	1874.6(4) 1246.2(3) 1487.8(4)	119.71(2)	AgN ₂	Ν	216.1(11,14)	174.7(1)	22

Table 1 Structural data for mononuclear silver compounds with coordination number one and two.^a

Table 1 Continued

$[Ag^{I}(py)_{2}] \cdot [Ag^{I}(py)_{4}](ClO_{4})_{2}$	tg	2195(1)		AgN ₂	N	216(1,1)	173.7(4)	23
	I 4	_						
• •	4	768.4(3)		AgN ₄	see	Table 3		
$[Ag'(C_6H_5N_3)_2]NO_3^{c}$	tr	1004.8(2)	98.44(2)	AgN ₂	Ν	214.9(3,3)	158.4(1)	24
		1031.1(3)	107.23(2)	AaN	N	210 6/2 10)	151 2(2)	
IN(PPh) ILA dI(B H-NC).	4 m	1797 6(6)	91.13(3)	Agin ₂	N C	219.0(3,10) 205 3(12 11)	169 8(5)	25
(at 185 K)	\mathbf{P}_{2}/c	1155 9(3)	94 30(6)	ABC ₂	C	205.5(12,11)	109.8(3)	20
(41 105 11)	4	1920(3)	5 1.50(0)					
K[Ag ^I (dtt) ₂]H ₂ O	m			AgC ₂	С	214.7(-,)	180	26a
$[Ag^{I}(RNC)_{2}PF_{6}$	C2/c	2002.2(8)		AgC ₂	С	207.5(14,0)	156.1(6)	26b
	4	1082.9(7)	106.4(1)					
		2002.3(6)	110 74(0)		0	214 4(5)	170 0(0)	
$Ag'(C_6F_5)(CH_2PPh_3)$		889.1(3)	112.74(3)	AgC_2	C E C	214.4(5)	1 /8.2(2)	27
	2	1263 6(5)	07 28(3)		$(C_6\Gamma_5)C$	210.3(0)		
	m	1203.0(3) 1213.9(2)	J1.20(5)	AgC.	С	213 1(6)	175 4(3)	27
	$P2_1/n$	1248.7(2)	103.06(2)	-8-2	$(C_6F_5)C$	210.2(6)	- / 01 ((2))	
	4	1502.3(3)			1057			
$[Ag^{I}(CH(PPh_{3})CO_{2}Et)_{2}]$	tr_	983.2(3)	77.10(3)	AgC ₂	С	218.3(15,2)	173.4(7)	28
$(ClO_4 \cdot 0.5CH_2Cl_2)$	P1	1096.5(4)	78.23(4)					
	2	2179.8(7)	73.07(2)	4-01	~	221.0(0.0)	175 (1)	20
$[Ag\{CH(PPn_3)COPn\}_2]$		11/8.1(3) 1040.7(4)	80.40(2)	AgC 2	L	221.9(9,0)	1/5.6(4)	28
$(NO_3) \cdot 0.25 CH_2 CI_2$		1940.7(4)	89 65(2)	AgC.	C	225 6(8 0)	1167 7(4)	
[Li(thf),].[Ag ^I {C(SiMe ₂) ₂ } ₂]	т tr	942.6(1)	94.49(2)	AgC ₂	č	218 07(7.18)	not given	29
	ΡĪ	1204.7(2)	90.09(2)		U	210:0 /(1,10)	not Bron	
	2	2333.1(3)	94.27(2)					
$Ag^{I}{CF(CF_{3})_{2}}_{2}$	or	2114.2(3)		AgC_2	С	201.5(35)	170(1)	30
$[Rh(dppe)_2]$	Pba2	2226.2(2)				219.1(17)		
(at 203 K)	4	1424 2/9)	1187.7(2)	4-01	0	222 0(2 1)	178 02(()	21
$[K(crypt-2,2,2)][AgCl_2]$	m P2/c	1424.2(8)	05 63(5)	AgCI ₂	Cl	232.9(2,1)	1/8.03(0)	31
	4	1161.4(6)	<i>y</i> 5.05(5)					
$[N(PPh_3)_2][Ag^I(Sg)]S_8$	tr	1383.8(4)	62.38(2)	AgS ₂	S	236.8(3,1)	166.4(1)	32
	ΡĪ	1429.5(4)	68.05(2)	0 2				
_	2	1540.5(5)	65.86(2)					
$[Ag^{1}(C_{12}H_{17}N_{2}S)_{2}]NO_{3}^{c}$	m	1254.1		AgS_2	S	240.3(4,5)	159.4(1)	33
	$P2_1/n$	4347.0	106.27	4.0	G	240.1/2.0	150 7(1)	
[A al/Denos) BE	8	1109.0		AgS ₂	5 D	240.1(3,5)	158.7(1)	24
$[Ag^{(rmes_3)_2}]rr_6$	Ug D3 21	1557.8(2)		Agr ₂	r	240.1(2,0)	179.4(3)	34
	3	1994.5(4)						
$[Ag^{1}{P(NMe_{2})_{3}}_{2}]BPh_{4}$	m	1197.5(3)		AgP ₂	Р	239.4(2,1)	166.9(1)	35
	$P2_1/c$	1732.5(3)	107.08(3)	• -				
•	4	2007.9(5)						
$[Ag^{I}{PPh_{2}(C_{5}H_{9})}_{2}]ClO_{4}^{c}$	m	1057.4(6)		AgP ₂	Р	242.4(2,7)	145.1(1)	36
	Pn	1714.2(11)	104.34(5)	4 - D	D	240.0/2.11	152.0(1)	
Mal(C H P))CIO 6	4 m	2356 7(0)		Agr ₂	P D	240.8(2,11) 237.8(4,1)	155.0(1)	27
$[Ag(C_{28}I_{34}I_{2})]CIO_{4}$	\mathbf{P}_{2}/a	15720(3)	96 35(2)	Agi 2	1	237.6(4,1)	104.8(1)	51
	4	1524.5(4))0.33(L)	AgPa	Р	239.1(3.2)	167.6(1)	
$[Ag^{I}(Pcy_{3})_{2}]ClO_{4}$	tr	950.5(2)	99.03(2)	AgP ₂	P	243.1(1,2)	147.34(3)	38
	P 1	979.0(2́)	95.44(2)	- 1				
	2	2366.7(6)	115.97(1)	. –	_			
[Ag'(by)]ClO ₄ ·	m	1601.5(4)	00.0	AgP_2	Р	239.4(2,1)	161.5(1)	39
месоме	Pbca	2005.0(4)	90.0					
	0	2300.2(0)						

Table 1 Continued

[Ag ^I (pp)]ClO ₄	m	1543.5(3)		AgP ₂	Р	240.9(3,8)	151.5(1)	40
	$P2_1/c$	1312.9(3)	100.39(1)					
_	4	1892.7(3)						
$[Ag^{I}{As(C_{5}H_{9})_{3}}_{2}]ClO_{4}$	m	1016.2(4)		AgAs ₂	As	248.1(2,1)	151.2(1)	36
	$P2_1/n$	2321.(6)	98.37(2)					
	4	1435.1(3)						
Ag ^I (tmpp)Cl	tg	1531.0(1)		AgClP	C1	234.2(1)	175.0(1)	41
	P41				Р	237.9(1)		
	4	1236.6(1)						
Ag ^I (tmpp)Br	tg	1531.9(4)		AgPBr	Р	237.4(2)	174.40(6)	41
	P41	_			Br	244.8(1)		
	4	1244.1(6)						

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand. ^cThere are two crystallographically independent molecules.

Table 1A Mean values of M(I)-L distances in mononuclear two-coordinated derivatives (data for Cu(I)-L are taken from ref. 42, and for Au (I)-L ref. 43; M[covalent radius]).

Coord. atom/ligand	Covalent radius	Cu(I)-L [pm]	Au(1)-L [pm]	Ag-L [pm]
	[pm]	[1.38 pm]	[1.43 pm]	[1.53 pm]
LN	75	189.7(42,69)	200.4(64,64)	213.7(122,78)
LC	77	194.6(40,124)	207.5(95,124)	215.4(139,102)
Cl	99	207.7(120.41)	227.6(54,54)	233.6(7.6)
LS	102	213.7	228.8(16,50)	240.2(1,1)
LP	106	216.9(8,28)	227.5(85,50)	240.6(33,55)
Br	114	224.4(35,31)	238.2(5,5)	244.8
LAs	120		234.2	248.1

The first number in parenthesis is maximum deviation from the shortest and the second one form the longest distance from the mean value.

regular planar geometry is observed in two cases, one with 1-phenyl-3,5dimethylpyrazole ligands,⁴⁵ and the other with 3,4-di(methylthio)-1,3-dithia-2thione-4-cyclopentene ligands.⁴⁶ Other examples with three identical ligands exhibit some degree of distortion.⁴⁷⁻⁴⁹ The silver-anion interaction is responsible for the deviation from planarity of the AgP₃ core of the cationic complexes. Distortion from planarity in the [AgI₃]⁻ anionic complex is due to steric hindrance between the iodine atoms.⁵⁰ Highly distorted geometry in the remaining examples in Table 2 is due to the presence of different types of ligand around each silver atom, some of them being bidentate.

The mean Ag(I)-L distances (Table 2A) increase with the covalent radius of the metal, except bidentate N-donor ligands. In general the distances are longer than that of the two-coordinate derivatives, as expected.

The compound $Ag(C_{10}H_{18})_2(NO_3)$ exists in two isomeric forms, *cis*-⁵³ and *trans*-.⁵⁴

Compound	Cryst. cl.	a [pm]	α[°]	Chromo-		M-L		L-M-L	Ref.
	Z	c [pm]	ρ[] γ[°]	phore		[pm]		[°]	
[Ag ^l (pdp) ₃]NO ₃	trg	1530(2)		AgN ₃	N ^b	224.3(3.0)		119.83(1,0)	45
$[\mathrm{Ag}^{\mathrm{I}}(\mathrm{C}_{5}\mathrm{H}_{6}\mathrm{S}_{5})_{3}]\mathrm{PF}_{6}$	3 tr PT		120.0(2) 104.31(5) 94.18(5)	AgS ₃	S	250.2(3,12)		119.79(9,1.25)	46
[Ag ^I (PPh ₃) ₃]NO ₃	$\frac{2}{m}$ $\frac{P2_1}{n}$	1322.3(3) 1798.0(2) 1370.9(2) 1891.5(3)	94.91(2)	AgP ₃	Р	256.8(3,62)		115.6(1,3.2)	47
$[Ag^{I}{PPh_{2}} (C_{5}H_{9})]_{3}]BF_{4}$	trg P31c	1339.8(6)		AgP ₃	Р	254.5(3,0)		117.4(1,0)	48
[Ag ^I (PPh ₃) ₃]BF	4 m P2 ₁ /m 4	1902.9(6) 1376.4(4) 1801.8(5)	94.26(2)	AgP ₃	Р	250.6(3), 256.0(3,17)		115.1(1,2.0)	49
$(PPh_3Me)_2[Ag^{I}l_3]$	m P2 ₁	1646.9(5) 1251.4(2) 967.3(2)	103.64(3)	Agl ₃	I	274.8(1,7)		120.0(1,4.7)	50
[Ag ¹ (pa)(NO ₃)	r $P\overline{1}$	1063.74(10) 862.70(7) 738.31(6)	106.39(7) 83.42(6) 75.01(7)	AgN ₂ O	N O ₂ NO	233.8(3,35) 225.9(3)	N,N [♭] N,O	72.54(9) 142.7(1,7)	51
[Ag ¹ (iot) ₂]ClO ₄	$m P2_1/c$	1375(5) 735(2)	119.9(6)	AgN ₂ O	N O	219.7(16) 228.3(17) 254.3(13)	N,N N,O	144.3(6) 94.0(6) 121.7(6)	52
cis-Ag ^I (C ₁₀ H ₁₈) ₂ (NO ₃)	m C2/c	532.9 1453	92.02	AgC ₂ O	C O	250(-, 1) 250		not given	53
trans-Ag ^I ($C_{10}H_{18}$) ₂ (NO ₃)	4 or Pbcn	547 1469		AgC ₂ O	C O	244(2,2) 249		not given	54
[Ag ^I (C ₁₄ H ₂₆) ₂ (NO ₃)	or $C2_12_12_1$	2073 587.9 1686 2830		AgC ₂ O	C O	252(-,3) 240		not given	53
$[Ag^{I}(C_{6}H_{11}Ph)_{2}$ (ClO ₄)	or Pmcn	3217(2) 566.6(3)		AgC ₂ O	C O	248(1,0) 266(1)	C,C C,O	109(1) 87(1)	55
$[Ag^{I}(PPh_{3})_{2} \cdot (2,4,6-Cl_{3}C_{6}H_{2}O)$	m $P2_1/c$	1267(1) 1669.2(4) 1794.2(4) 1285 7(3)	97.60(1)	AgP ₂ O	P O	244.8(1,4) 223.5(4)	P,P P,O	131.1(1)56 114.4(3,1.0)	56
$[Ag^{I}(Pcy_{3})_{2}(NO_{3})$	tr P1 2	925.8(2) 982.8(2) 2338 5(5)	94.73(2) 96.35(2)	AgP ₂ O	P O	244.3(3,3) 245(1)	Р,Р Р,О	139.04(9) 108.7(3,3.8)	38
[Ag ^I (PPh ₃) ₂ (NO ₃)	tr P1	1182.1(3) 1199.0(3) 1366.0(3)	110.42(1) 102.05(2) 112.80(2) 105.30(2)	AgP ₂ O	P O	244.2(1,2) 246.4(4)	P,P P,O	138.21(5) 105.8(7,6.0)	57
$[Ag^{l}(PPh_{3})_{2} \\ \{C_{5}(CO_{2}Me)_{5}\}$	or $P2_12_12_1$	2659.2(8) 1863.8(6) 950.7(2)	105.50(2)	AgP ₂ O	Р О	242.1(2,7) 246.4(5)	P,P P,O	136.64(5) 107.5(1,13.4)	58
[Ag ^I (pp)(NO ₃)	m $P2_1/n$	949.8(1) 1765.9(2) 2181.6(3)	98.34(1)	AgP ₂ O	P O	241.7(2,7) 247.6(12)	P,P P,O	148.6(1) 104.3(3,8.7)	40
[Ag ^I (pp)Cl	m $P2_1/c$ 4	940 1720 2210	106.15	AgP ₂ Cl	P Cl	243.4(1,22) 251.2(1)	Р,Р Р,О	142.2(1) 108.5(1,5.0)	40, 59

 Table 2 Structural data for silver compounds with coordination number three.^a

 Table 2
 Continued

[Ag ^I (bp)Cl]CH ₂ Cl ₂	m P2 ₁ /n	1116.3(3) 2438.28(7)	76.88(2)	AgP ₂ Cl	P Cl	244.2(2,15) 256.9(2)	P,P P,Cl	142.6(1) 108.6(1,8.0)	39
[Ag ^I (bp)Br]CH ₂ Cl ₂	$ \begin{array}{c} 4 \\ m \\ P2_1/n \\ 4 \end{array} $	1409.4(4) 1117.4(3) 2432.3(9) 1417.8(4)	102.69	AgP ₂ Br	P Br	244.8(5,15) 268.1(2)	Р,Р Р,О	141.6(2) 109.1(1,7.7)	39

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean.^b The chemical identity of the coordinated atom/ligand is specified in these columns.

Table 2A Mean values of M(I)-L distances [pm] in mononuclear three-coordinated derivatives (Cu(I)-L⁴² and Au(I)-L⁴³; M[covalent radius]).

Coord. atom/ligand	Covalent radius	Cu(I)-L [pm]	Au(1)-L [pm]	Ag-L [pm]
	[pm]	[1.38 pm]	[1.43 pm]	[1.53 pm]
LO	73	206.9(152,151)		241.7(182,83)
LN	75	199.2(48,33)		224.3
		205.8(74,22) ^a	228.6(120,120) ^a	227.3(76,110) ^a
Cl	99	223.2(106,103)	261.5(115,203)	, , ,
LS	102	224.5(31,90)	246.8	250.2(12,12)
LP	106	224.3(109,52)	237.3(161,58)	248.3(73,147)

The first number in parenthesis is maximum deviation from the shortest and the second one from the longest distance from the mean value. ^aFor bidentate ligands.

2.3. Coordination number four

Structural data for mononuclear silver compounds of coordination number four are summarized in Table 3. There are over seventy examples, with electronic configurations from d^{10} to d^8 , the latter having only one example⁷⁵ and the former being by far the most common. Silver(I) prefers a tetrahedral environment, but silver(II) and silver(III) use the square planar arrangement as expected. The ligands range over uni-, bi-, tri- and tetradentate and various degrees of distortion are consequently observed, especially in the silver(I) derivatives. For the bidentate ligands there are different sizes of the metallo-ring causing variations in the bite angles. The effects of both electronic and steric factors can be seen in the variation of the L-Ag-L bond angles. For the four-membered metallocycles, the L-Ag-L bond angles range from 48° to 53° for O-donor ligands, and from 65° to 68° for S-donor ligands, reflecting the difference in covalent radius of oxygen (73 pm) and sulphur (102 pm). For the five-membered metallocycles, the L-Ag-L angles range from 72° to 77° for the N-donors, from 84° to 88° for the S-donors and around 84° for the P-donor ligands.

Comparison of the Ag-L bond distances (Table 3) shows several trends. The mean Ag-L bond distance increases with decreasing oxidation state of the silver. For example the mean Ag-L distance increases in the sequence: 216 pm (Ag(II)) < 232.6pm (Ag(I)) for bidentate N donors; 240.7 pm (Ag(II)) < 273.5 pm (Ag(I)) for bidentate S-donors; and 197.9 pm (Ag(III)) < 214.4 pm (Ag II)) < 240.7 pm (Ag(I)) for tetradentate N-donors. This reflects the ionic radius of the respective silver ions. When the ligand is unidentate, the mean Ag(I)-L distance increases in the sequence: 176 pm (H, 37 pm) < 230.8 pm (N, 75 pm) < 247.3 pm (O, 73 pm) < 253.3 pm (Cl, 99 pm) < 255.2 pm (S, 102 pm) < 256.1 pm (P, 106 pm) < 264.8 pm (Br, 114 pm) < 266.3 pm (As, 120 pm) < 277.5 pm (I, 133 pm). This reflects, except for N and O (see below), the trend in covalent radius of the coordinating atom.

Steric effects on the Ag(I)-P bond lengths can be seen clearly in the PPh₃ derivatives, representing the most common unidentate ligand in silver(I) chemistry. Table 3 contains examples of derivatives with one, two, three or four such ligands. The mean Ag(I)-P bond distances vary with the chromophore in the sequence: 239.2 pm (AgPX₃) < 246.8 pm (AgP₂X₂) < 255.5 pm (AgP₃X) < 264.9 pm (AgP₄). A similar trend is observed in the AsPh₃ derivatives: 262.2 pm (AgAs₃X) < 267.3 pm (AgAs₄). It is noted that the mean Cu(I)-P bond distance also varies in the same manner,⁴² but are in general shorter than those of the silver derivatives: 222.9 pm (CuPX₃) < 226.5 pm (CuP₂X₂) < 233.2 pm (CuP₃X) < 246.1 pm (CuP₄).

Some other trends were found between the uni- and multidentate ligands. For example, the mean Ag-N distance increases with the dentate character of the N-donor ligands: 230.8 pm (uni-) < 232.6 pm (bi-) < 239.0 pm (tri-) < 240.7 pm (tetradentate). However, the opposite trend is observed for O-donor or C-donor ligands: 243.4 pm (O, bi-) < 247.3 pm (O, unidentate); 243 pm (C, tri-) < 250 pm (C, bidentate). A more random order is observed for S or P donors, for example: 255.0 pm (S, tetra-) < 255.2 pm (S, uni-) < 259.9 pm (S, tri-) < 273.5 pm (S, bidentate); 249.4 pm (P, bi-) < 253.1 pm (P, tri-) < 256.1 pm (P, unidentate).

The mean M(I)-L bond distances for the Group IB metals are shown in Table 3A. In general, the mean M(I)-L bond lengths increase with the covalent radius of both L and M, as well as with coordination number (see Tables 1A and 2A). The most common ligand found with the +1 metals of this subgroup is triphenylphosphine, and the most common coordination environment is tetrahedral. It should be noted that there is some degree of confusion regarding M-O bond distances. Some authors have considered an oxygen to be bonding when the M-O distance is over 270 pm, while others have cut off bonding at 260 pm. Considering the covalent radii of copper, silver and oxygen to be 138, 153 and 73 pm, respectively, it would seem appropriate to consider any distance over about 250 pm as something less than a full bonding interaction.

There are some derivatives, $Ag(PPh_3)_3I^{49,101}$ and $Ag(PPh_3)_2pyX^{120,121}$ which exist in two isomeric forms differing mostly by degree of distortion. In the former⁴⁹ the triclinic form has two crystallographically independent molecules present. In several other examples^{61,72,93,110} two, or even three,⁶³ crystallographically independent molecules are present, again differing only by degree of distortion. There is one example which has been studied independently by two different groups, one in 1989⁸⁹ and the other in 1990,⁸⁷ with similar results.

2.4 Coordination number five

The mononuclear pentacoordinate silver compounds are presented in Table 4, the silver atom being only in the +1 oxidation state. The structures of these derivatives lie between the two limiting geometries of square pyramidal and trigonal bipyramidal. The conversion of one structure into the other requires only minor distortion. Both of the limiting geometries, with varying degrees of distortion, are

Compound	Cryst. cl. Space gr.	<i>a</i> [pm] <i>b</i> [pm]	α[°] β[°]	Chromo-]	M-L	L-M-L	Ref.
	Z	c [pm]	γ́[°]			pm]	[°]	
[Ag ^I (4-NO ₂ pyNO) ₂ (NO ₃)	m C2/c 8	2407.3(4) 529(1) 2339.6(4)	98.73(2)	AgO ₄	О ^ь (NO ₃)О	234.1(3,23) 251.3(6,60)	48.1(2), 78.3(1) 120.0(1,2.3) 153.9(2)	60
$\frac{[Ag^{I}(NO_{3})_{2}]^{c}}{[Rh(py)_{4}Cl_{2}]}$	or Pbcn 4	765.8(2) 2148.6(3) 1495.3(3)		AgO ₄	0	224.8(3,0) 259.7(5,0)	52.7(1) 124.6(1,10.6) 169.3(2)	61
				AgO ₄	0	231.3(7,0) 241.3(10,0)	54.7(1) 135.9(1,7.0) 150.8(1)	
$[Ag1(py)_4]ClO_4 (at 260 K)$	tg I 4 2	$\frac{1247.1(3)}{689.4(2)}$		AgN ₄	Ν	232.2(3,0)	110.2(2,2.1)	62
$[Ag^{I}(py)_{4}][Ag^{I}(py)_{2}]$	tg	2195(1)		AgN ₄	N N	230(1,0)	107.1(4,7.8)	23
$(CIO_4)_2$	4	768.4(3)		Agin ₂	IN	210(1,1)	1/3./(4)	
$[Ag'(MeCN)_4]ClO_4^a$	or	2450(1)		AgN ₄	N	224(3,6)	109.4(10,4.7)	63
(at 240 K)	$Pn2_1a$	20/5.6(8)		AgN ₄	N	228(2,7)	109.3(8,6.6)	
$[\Lambda \alpha^{II}(hny)](N(O))$	2	630.7(3) 605.2(3)		Agin ₄	IN N	220(2,3)	109.4(9,0.7)	61
H_2O	$\frac{P2_1}{c}$	2751.2(9) 1153.9(5)	103.25(5)	Agin ₄	IN	210(1,2)	103.4(4,8)	04
[Ag ^I (Me ₄ bpy) ₂]BF ₄	or Pbcn 4	1673.7(2) 1370.3(2) 1191.6(2)		AgN ₄	N	232.1(5,3)	72.1(2) 122.3(2,5) 140.5(2)	65
$\begin{array}{l} [Ag^{I}(Br_{2}C_{16}H_{14}N_{2})_{2}] \\ (CF_{3}SO_{3}) \end{array}$	m P2 ₁ /c 4	1449.1(3) 2100.5(7) 1367 7(3)	108.75(2)	AgN ₄	N	233.3(8,16)	76.4(3,3) 128.2(3,7.8)	66
$[Ag^{I}\{Me_{2}C(pz)_{2}\}_{2}]$ ClO_{4}	tr PĪ 2	1329.2(2) 1162.5(1) 756.90(5)	94.764(6) 86.320(6) 102.183(6)	AgN₄	N	228.7(4,40) 243.2(4)	83.2(1,6) 109.8(1,5.8) 140.5(1,4.7)	67
Agu(tpp)	tr PI 1	637 1123 1247	100.5(1) 82.2(1) 113.(1)	AgN ₄	Ν	not given	1,000(1,117)	68
Ag ^{II} (tpp)	tr P 1 1	1050.3(2) 1248.5(2) 635.1(2)	97.72(1) 100.68(1) 97.15(1)	AgN ₄	N	209.2(3,10)	89.9(1)	69
${Ag^{II}(tpp)_{0.54}}$ (tpp) _{0.46}	tg I4/m 2	1338.4(5)		AgN_4	N	206.3(5,0)	not given	70
$[Agu(Me_4tacd)] (ClO_4)_2$	$\frac{2}{m}$ $P2_1/n$ 2	926.53(7) 936.26(8) 1285.16(8)	90.740(5)	AgN4	N	219.5(3,1)	94.2(1)	71
$[Ag^{II}(tacd)](ClO_4)_2^{c}$	or Pbnm	1302.4(2) 1451.0(1)		AgN ₄	N	219.2(11,0)		72
. Har	4	959.4(1)		AgN ₄	N	215.8(2,0)		
$[Ag''(Me_6tacd)]$ $(NO_3)_2$	m C2/c 4	1322.2(3) 1162.9(4) 1547.1(3)	111.87(2)	AgN ₄	N	216.1(3,2)	90.0(1,4.6)	73
[Agi(ml)](CF ₃ SO ₃)	$r P \overline{1}$	990.0(4) 1146.5(4)	106.10(3) 99.95(3) 90.38(3)	AgN ₄	N	227.8(3,3) 253.6(3,19)	72.3(1) – 153.3(1)	74
$[Ag^{III}(C_6H_{16}N_{10})]$ · (SO ₄)(HSO ₄)·H ₂ O	tr P1 2	864.5(5) 917.7(5) 1336.3(6)	104.2(2) 117.5(2) 99.4(2)	AgN ₄	N	197.7(8,10)	90.0(4,3.6)	75

Table 3 Structural data for mononuclear silver compounds with coordination number Four^a

 Table 3
 Continued

$\frac{[Ag^{III}(C_6H_{16}N_{10})]}{(ClO_4)_3}$	tr PT	1155.6(5) 1145.2(5)	107.96(4) 93.65(3)	AgN ₄	N	198(1,1)	not given	76
$[Ag(C_{24}H_{32})]$	m P2 ₁ /c	807.6(4) 1618.9(2) 981.4(1)	60.92(2)	AgC ₄	С	250	90	77 a
$[Ag^{I}(1,5-C_{8}H_{12})_{2}]BF_{4}$? or Pnma	1670.4(2) 1797.3(3) 1019.0(3)		AgC4	С	250(1,2)	not given	77b
Ag ^I (SH)(Et ₂ btu) ₃	$\frac{4}{m}$ P2 ₁ /n	920.1(2) 818.1(1) 2021.6(2)	98.21(1)	AgS ₄	HS	279.3(2)	97.5(1,1.5) 115.0(1,6)	78
$[Ag^{I}(C_{10}H_{18}OS_{4})_{4}]$ CF ₃ SO ₃)	4 or $P2_12_12_1$	2503.5(3) 825.8(6) 1437.1(4)		AgS ₄	S S	205.2(2,39) 261.7(2,44)	124.9(1) 109.30(7,19.7)	79
$[Ag^{I}(S_{8})_{2}]AsF_{6}$	4 m C2/c	1618.9(3) 1760.6(4) 786.6(2)	102.58(2)	AgS ₄	S	277.2(3,29)	71.5-142.2(2)	80
$\begin{matrix} [Ag^I(S_4N_4H_4)_2] \\ CIO_4 \cdot 1.5H_2O \end{matrix}$	$\frac{4}{m}$ $\frac{P2_1}{c}$	1547.6(3) 1168.4(5) 1462.3(6)	105.39(54)	AgS ₄	S	274.5(3,49)	64.0-150.2(1)	81
$[Ag^{I}(C_{12}H_{16}S_{3})_{2}]$ (CF ₃ SO ₃)	4 tr P1	1148.7(3) 1239.0(2) 1415.8(4)	91.04(3) 109.64(2)	AgS ₄	S	247.6(3) ^{e1} 258.7(3,17) ^{e2}	84.9(1,3) 107.3(1)	82
$Ag^{II}(dtdc)_2$	r \overline{PI}	1257.4(4) 1034.8(3) 1026.5(5)	90.12(2) 90.65(2)	AgS ₄	S	255(2,5)	86.0-126.0(8)	83
$[Ag^{I}(C_{10}H_{20}S_{6})]ClO_{4}$	or Pbca	1028.3(3) 984.2(2) 2574.8(4)	84.70(2)	AgS ₄	S	255.0(3,14)	87.7(1,9) 121.4(1,8.5)	84
[Ag ^I (PPh ₃) ₄ ClO ₄	rh R $\overline{3}$	1908.5(5)	43.90(1)	AgP ₄	Р	265.9(4,9)	109.4(2,1)	85
$[Ag^{I}(PPh_{3})_{4}]NO_{3}$	z trg R 3	1907(2)	_ 43.77(5)	AgP ₄	Р	265.7(4,14)	109.47(11,2)	57
[Ag ^I (PPh ₃) ₄]PF ₆	trg R 3	1433.0(6) 1433.0(6) 5157(1)		AgP ₄	Р	265.7(2,18)	109.21(2)	86
[Ag ^I (PPh ₃) ₄]PF ₆	rh R 3 2	1911.0(10)	44.04(3)	AgP ₄	Р	266.0(3,13)	109.47(9,28)	87a
$[Ag^{I}(PPh_{3})_{4}]$ · [SnPh ₂ (NO ₃) ₂ Cl]	tr PI 2	2243(2) 1413(1) 1396(1)	90.59(5) 69.82(4) 64.58(8)	AgP ₄	Р	265.9(5,87)	109.5(2,3.6)	87b
[Ag ^I (adpo) ₄]SbF ₆	tg P4/mcc	1619.2(2) -	04.58(8)	AgP₄	Р	261.2(1,0)	90.00(1)	88
(at 203K) [Ag ^I (dppe) ₂]NO ₃	4 m P2 ₁ /n	2385.6(2) 1483.4(2) 1979.5(2)	93.09(1)	AgP ₄	Р	251.5(3,27)	84.2(1,4) 116.9(1,1.0) 120.2(1,4)	89
$[Ag^{I}(dppe)_{2}][SnPh_{3} (NO_{3})_{2}]$	4 tr P1 2	1747.5(8) 1032.7(5) 1775 8(7)	95.00(3) 77.43(2) 88.75(3)	AgP₄	Р	247.3(2,10)	129.2(1,4) 84.0(1,1) 123.4(1,5.6)	90
[Ag ^I (AsPh ₃) ₄] · [SnPh ₂ (NO ₃) ₃]	tr PI 2	2257(2) 1422(1) 1407(1)	90.9(1) 69.9(1) 65.6(1)	AgAs ₄	As	267.0(4,30)	109.4(3,4.9)	91
[Ag ^I (AsPh ₃) ₄]. [SnPh ₂ (NO ₃) ₂ Cl]	r $P\overline{1}$ 2	2268(2) 1424(1) 1424(1)	90.66(6) 69.17(5) 64.36(4)	AgAs ₄	As	267.6(3,22)	109.4(2,3.7)	91

Table 3 Continued

$[Ag^{I}(AsPh_{3})_{4}] \cdot [Sn_{2}Ph_{4}(NO_{3})_{4}(OH)_{2}]$	tr Pī	2121.2(9) 1453.2(6)	95.91(3) 77.76(4)	AgAs ₄	As	267.4(2,26)		109.4(1,5.0)	92
2 MeCN Ag ¹ (C ₉ H ₂₁ N ₃)(SCN) ^e	2 or Pcmn	1330.4(5) 949.7(5) 1183.7(8) 2600(1)	/5.4/(3)	AgN ₃ S	N S	240.4(9,9) 236.0(4)	N,N⁵ N,S	74.3(3,8) 135.6(2,4.1)	93
	0	2000(1)		AgN ₃ S	N S	237.7(11,54) 236.8(5)	N,N N,S	74.5(4,3) 135.3(3,4.2)	
Ag ^I (C ₃₀ H ₃₀)(CF ₃ SO ₃)	m P2 ₁ /n	1869.6(1) 999.8(1) 1402 2(1)	93.37(1)	AgC ₃ O	C O	243(1,5) 249(1)	,		94
[Ag ^I (Metu) ₃ Cl	or Pmcn	1482.4(2) 852.4(1)		AgS ₃ Cl	S	252.0(2,0) 266.5(3) 264.0(2)	S,S S,Cl	111.65(5) 85.69(7)	95
[Ag ^I (C ₆ H ₁₂ S ₃)Cl	4 m 12/a 8	1207.1(1) 1414.4(2) 668.4(1) 2227.7(2)	91.65(1)	AgS ₃ Cl	S Cl	260.5(1,13) 238.9(1)	S,S S,Cl	114.47(0) 84.43(4,28) 128.9(1,7.2)	96
[Ag ^I (tt(9)ob)(PPh ₃)] ClO ₄	$\frac{m}{P2}/c$	817.04(8) 1623.9(1) 2334.9(2)	101.36(1)	AgS ₃ P	S P	257.3(1,27) 238.2(1)	S,S S P	84.45(5,4) 106.55(1) 123.87(5.6.1)	97
[Ag ^I ({(S)PPh ₂ } ₃ C) (PBu ⁿ ₃)	m P2 ₁ /c 4	1819.2(3) 1298.6(2) 2119.4(5)	109.42(1)	AgS ₃ P	S P	263.1(2,46) 240.2(3)	S,S S,P	100.4(1,2.0) 117.2(1,8.4)	98
$Ag^{I}(PPh_{2}Me)_{3}(BH_{4})$	m P2 ₁ /n 4	1276.7(6) 1983.8(7) 1466.1(6)	97.19(4)	AgP ₃ H	Р Н	248.2(2,36) 176(7)	P,P P,H	116.6(6,11.4) 85(5) 118(5)	99
Ag ^I (PPh ₃) ₃ (NO ₃)	m P2 ₁ /n 4	1898.4(5) 1371.0(3) 1790.0(4)	94.94	AgP ₃ O	P O	256.7(2,63) 268.4(6)	P,P P,O	115.6(5,3.6) 83.7(1) 124.4(1)	57
Ag ^I (PPh ₃) ₃ Cl	$\frac{m}{P2_1/n}$	1022.1(1) 3373.5(1) 1337.4(3)	89.78(1)	AgP ₃ Cl	P Cl	254.3(1,23) 255.2(1)	P,P P,Cl	115.1(1,2.0) 103.0(1,6.4)	100
[Ag ^I (PPh ₃) ₃ Cl] 2Me ₂ CO	tr P1 2	1365.4(4) 1405.9(4) 1397.0(4)	84.82(2) 87.71(2) 75.68(2)	AgP ₃ Cl	P Cl	257.2(4,14) 253.3(4)	P,P P,Cl	114.3(1,1.4) 103.4(1,1.4)	101
Ag ^I (PPh ₃) ₃ Br	trg P3 3	1936.6(6) 		AgP ₃ Br	P Br	253.6(6,13) 268.0(6)	P,P P,Br	109.8(2,5) 109.2(1,4)	101
Ag ^t (PPh ₃) ₃ I	m P2 ₁ /n	1899.3(8) 1380.7(4) 1778.1(8)	96.11(4)	AgP ₃ I	P	255.9(2,15) 278.0(3) 285.8(1)	P,P P,I	112.0(1,5.0) 106.7(6,2.3)	101
Ag ^I (PPh ₃) ₃ I ^c	r $P\overline{1}$	1409.7(5) 1438.4(4) 2341.3(7)	92.61(2) 91.85(2) 91.12(2)	AgP ₃ I	P I	258.8(4,19) 285.5(1)	P,P P,1	113.1(1,1) 105.3(1,1.6)	49
	4	2341.5(7))1.12(2)	AgP ₃ I	P I	260.4(3,22) 286.4(1)	P,P P,I	112.7(1,1.9) 106.0(1,3.0)	
Ag ^l (triphos)I	or Pna2 ₁ 4	2053.4(6) 1036.3(3) 1772.4(4)		AgP ₃ l	P I	253.1(5,24) 269.1(3)	P,P P,I	89.0(2,2.2) 125.7(1,10.2)	102
[Ag ^I (AsPh ₃) ₃ Cl] 0.5Me ₂ CO	r $P\overline{1}$ 2	1343.8(2) 1405.5(3) 1416.6(3)	95.45(2) 87.01(2) 103.92(1)	AgAs ₃ Cl	As Cl	262.2(2,15) 251.8(5)	As,As As,Cl	112.9(8,1.1) 105.7(1,4.2)	103
H[Ag ¹ (absg) ₂]	$\frac{1}{2}$ m P2 ₁ /n	573(2) 1216(1) 1394(3)	94.9(1)	AgO ₂ N ₂	O N	259.9(12,0) 228.0(12,0)	O,N	88.1(1,1)	104
$\begin{array}{l} [Ag'(fla)_2](NO_2)_2 \\ 4H_2O \end{array}$	2 m C2/c 8	2176.4(11) 700.5(4) 1733.6(9)	107.57(2)	AgO_2N_2	O N	260.0(9,0) 237.3(9,0)	O,N	67.0(3)	105

Table 3Continued

		0170.0(()		1 0 N	~	2(1,2/7,0)	0.11	(7.0/0)	100
$[Ag'(fla)_{2}] \cdot (NO_{2})_{1.1}(NO_{3})_{0.9} \cdot 4H_{2}O$	m C2/c 8	2173.2(6) 709.2(2) 1750.3(4)	107.63(1)	AgO ₂ N ₂	0 N	261.2(7,0) 230.3(6,0)	O,N	67.8(2)	105
[Ag ^{II} (pydc) ₂]2H ₂ O	$m P2_1/n$	1750.5(4) 600.2(4) 1068.2(7) 1284.2(8)	90.83(15)	AgO_2N_2	O N	213 212	0,0 0,N	75.5 75.1(-,2.9)	106
[Ag ^I (OHqu)(OHquH)]py	$m P2_1/a$	1087(1) 1065(1) 1670(1)	92.6(2)	AgO_2N_2	0 N	247.8(5,27) 215.0(4,5)	0,0 N,N 0 N	109.9(2) 167.7(2) 115.6(2.1.7)	107
[Ag ^I (2-COOpy)· (2-COOHpy)]H₂O	m C2/c 4	1394.4(3) 794.9(1) 1428.7(3)	125.70(1)	AgO ₂ N ₂	O N	252.4(4,0) 220.7(3,0)	0,0 N,N O,N	79.9(2) 166.3(2) 70.6(1) 121.0(2)	108
[Ag ^I (otta) ₂]AsF ₆	or Pcca	920.3(1) 1021.7(1)		AgO ₂	O N	251.7(7,0) 230.1(6,0)		not given	109
$[\mathrm{Ag^{I}(rfl)}]\mathrm{ClO}_{4}\cdot0.5\mathrm{H}_{2}\mathrm{O}^{c}$	m C2 4	1946.4(10) 788.6(4) 1545.9(8)	107.34(2)	AgO_2N_2	0 N	252.1(5,0) 229.5(5,0)		not given	110
				AgO_2N_2	0	255.9(6,0)		not given	
$Ag^{I}(PPh_{3})_{2}(NO_{3})]C_{6}H_{6}$	tr PI 2	1227.9(1) 1626.0(1) 1113.4(1)	102.51(1) 114.28(1) 101.79(1)	AgO_2P_2	O P	251.8(2,55) 242.6(1,10)	0,0 P,P 0 P	50.4(1) 139.4(1) 107.3(1.10.9)	111
$Ag^{I}(PPh_{3})_{2}(NO_{3})$	tr PI	1177.2(3) 1200.7(2) 1415.7(3)	61.76(2) 62.77(2)	AgO_2P_2			0,1	107.5(1,10.7)	112
Ag ^I (PPh ₃) ₂ (HCOO)	m Cc/a	2495.2(2) 917.9(1)	116.34(1)	AgO ₂ P ₂					113
[Ag ¹ (PPh ₃) ₂ (MeCOO)	tr PT 4	1006 2434 1383	92.0 99.9 89.7	AgO_2P_2					114
Ag ^I (tch) ₂]NO ₃	m C2/c 8	1595.5(8) 892.2(5) 1717.1(8)	98.7(1)	AgN_2S_2	N S	251(1,0) 244.2(4,2)	N,N S,S N,S	98.7(4) 153.1(1) 77.2(3) 124.0(3)	115
$[Ag^{I}(C_{30}H_{38}N_{4}S_{4})] \cdot (CF_{3}COO)$	$m P2_1/n 4$	1042.8(1) 2314.5(5) 1551.7(3)	99.71(1)	AgN_2S_2	N S	229.7(5,5) 258.6(2,0)	N,N S,S N S	113.3(2) 110.98(7) 108 4(1 10 0)	116
[Ag ¹ (tdoco)]NO ₃	or Pbca	1749.0(8) 1506.8(7) 1384 7(6)		AgN_2S_2			1,0	100. (1,10.0)	117
[Ag ^I (PPh ₃) ₂ (EtOCS ₂)	or $P2_12_12_1$	940.1(3) 1869.1(4) 2011.4(3)		AgS_2P_2	S P	264.4(4,43) 247.04(4,1)	S,S P,P S P	68.0(1) 115.6(1) 115.9(1.4.6)	118
Ag ^I (PPh ₃) ₂ (Bu ^t SCS ₂)	tr PI	1057.1(1) 1363.8(3) 1430.1(3)	88.75(2) 72.84(1)	AgS_2P_2			3,1	115.5(1,4.0)	119
$Ag^{I}(PPh_{3})_{2}(py)Cl$	$\frac{1}{m} \frac{1}{P2_1/m}$	981.4(3) 2001.6(2) 903.9(4)	97.60(3)	AgP ₂ NCl	P N Cl	247.2(2,0) 258.5(5) 251.1(2)	P,P P,N P,Cl	123.55(4) 101.20(6) 114.37(3) 95.0(1)	120
Ag ¹ (PPh ₃) ₂ (py)Cl	m P2 ₁ /a 4	1964(1) 2003(1) 905.6(7)	97.66(6)	AgP ₂ NCl	P N Cl	247.67(2,2) 259.3(4) 251.7(2)	P,P P,N P,Cl N,Cl	123.60(7) 105.4(1) 114.4(1,1.2) 94.6(1)	121

Table 3 Continued

Ag ¹ (PPh ₃) ₂ (py)Br	m	980.3(2)		AgP ₂ Br	Р	247.6(1,0)	P,P	124.44(5)	120
	$P2_1/m$	2005.7(4)	97.31(2)		Ν	257.5(5)	P,N	102.10(6)	
2	2	915.5(2)	. ,		Br	262.9(1)	P,Br	112.86(3)	
		. ,					N,Br	96.8(1)	
$Ag^{I}(PPh_{3})_{2}(py)Br$	m	1962(1)		AgP ₂ NBr	Р	247.8(3,5)	P,P	124.4(1)	121
	$P2_1/a$	2007.2(9)	97.42(4)		Ν	257.2(7)	P,N	106.0(2)	
	4	916.6(5)			Br	263.6(2)	P,Br	112.9(1,2.2)	
							N,Br	96.2(2)	
Ag ¹ (PPh ₃) ₂ (2-SHpy)Cl	m	1436.2(2)		AgP ₂ ClS	Р	247.9(1,3)	P,P	123.0(0)	122
	$P2_1/c$	1030.2(1)	93.38(1)	- ~	Cl	259.5(1)	P,Cl	105.9(0,5.1)	
	4	2505.4(3)			S	262.5(1)	P.S	108.3(0.4.6)	
							CI,S	104.2(0)	
								()	

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specified in these columns. ^cThere are two crystallographically independent molecules. ^dThere are three crystallographically independent molecules. ^{e1}The unidentate ligand. ^{e2}The tridentate ligand.

Coord. atom/ligand	Covalent radius	Cu(I)-L [pm]	Au(I)-L [pm]	Ag(I)-L [pm]	
	[pm]	[138 pm]	[143 pm]	[153 pm]	
LO	73	224.5(230,34)		247.3(155,211)	
		217.0(164,170) ^a		243.4(186,163) ^a	
LN	75	204.0(120,105)		230.8(285,68)	
		202.9(119,481) ^a		232.6(79,106) ^a	
		208.0(60,365) ^b		239.0(67,23) ^b	
		205.5(118,177) ^c		240.7(129,148)°	
LC	77	198.8(91,45) ^a		250(2,2) ^a	
		206.0 ⁶		243(5,5) ^b	
Cl	99	234.4(109,130)	271.0	253.3(144,116)	
LS	102	234.0(150,64)	286.5(74,73)	255.2(192,241)	
		233.9(88,118) ^a		273.5(134,66) ^a	
		232.7(34,16)6		259.9(53.78) ⁶	
		230.3(54,56)°		255.0(14.14)°	
LP	106	229.6(116,270)	246.3(73,139)	256.1(179,219)	
		232.3(57,46) ^a		249,4(31,48) ^a	
		229.4(20,48) ^b		253.1(24.23) ^a	
Br	114	248.6(175,99)		264.8(19.32)	
LAs	120	238.7(65.48)		266.3(41.37)	
		235.7(24.14) ^a	$247(11.10)^{a}$		
I	133	262.8(138,82)		277.5(84,83)	

Table 3A Mean values of M(I)-L distances in mononuclear four-coordinated derivatives (Cu(1)-L⁴² and Au(I)-L⁴³ M[covalent radius])

The first number in parenthesis is the maximum deviation from the shortest and the second from the longest distance from the mean value. ^aFor bidentate ligands. ^bFor tridentate ligands. ^cFor tetradentate ligands.

observed. There are eleven purely coordination silver(I) compounds, with no CO or other C-donor ligands. Some of the others cannot be classified because the full data have not been published. In all these species, the coordination environment around the silver atom is built up by penta-dentate O^{23-125} or N-donors.¹²⁶ There is an example where a near planar arrangement of the pentadentate N-donor ligand

is observed,¹²⁷ with the maximum deviation of a nitrogen from the AgN_5 plane being 36 pm. Trigonal-bipyramidal geometry occurs in several cases^{128,129,132} with a high degree of distortion because the pentadentate ligands^{128–129} and tetradentate ligands¹³² span both equatorial and axial positions (Table 4). A distorted square pyramidal coordination around the Ag(I) atom is observed in other examples.^{91,130,131} In the trigonal bipyramidal derivatives the Ag-N and Ag-S bond distances in the axial positions are longer than those in the equatorial plane.

Orthorhombic $Ag(C_{10}H_{22}N_2OS_2)(SCN)$ exists in two isomeric square pyramidal forms, both having the axial position occupied by the SCN group, with Ag-S distances of 253.9(2) pm¹³⁰ and 252.6(2) pm,¹³¹ respectively, and the square plane is defined by the tetradentate ligand. The mean Ag(I)-L distances are again longer than those found in the comparable Cu(I) compounds.⁴² For example, the mean

M(I)-N distance is 245.5(85,95) pm for Ag(I) and 212.6(249,408) pm for Cu(I) when the ligand is a pentadentate N-donor, where the first number in parenthesis is the difference between the shortest and the mean values, and the second number between the longest and the mean. A similar trend can be observed for another pentadentate ligand, a 3N- and 2S-donor, giving mean M-L distances of 243.0(113,107) pm (L = N) and 263.0(75,83) pm (L = S) for Ag(I), and 230.0 (197,219) pm and 232.0(2,2) pm, respectively, for Cu(I).

2.5. Coordination numbers six and higher

Structural data for mononuclear silver compounds with coordination numbers six and higher are given in Table 5. Among the series of hexa-coordinated species there are examples in which the silver atom is in a distorted octahedral environment, sandwiched between two tridentate ligands.^{93,96,136,138,141,143,144,149} There are two neutral complex species in which Ag(II) is found,^{143,144} the remaining examples being cationic complexes of Ag(I) with anions normally considered too "hard" for the Ag(I) ion. Silver(I) atoms are found sitting in the cavity of a macrocyclic ligand, giving an octahedral arrangement of the six donor atoms of the macrocycle.^{133–135,137–139,142,147,148,150–152} In one case the silver(I) atom is coordinated by five macrocyclic donor atoms and the N atom of acetonitrile from the solvent. There are both neutral and cationic complexes, the latter coexisting with noncoordinated "hard" anions.

The mean Ag-L distances in the tridentate ligand series increases with the covalent radius of the donor-atom, in the sequence: 267 pm (C, 77 pm) < 272.5 pm (S, 102 pm) < 293 pm (Se, 116 pm). However, in the hexadentate ligand series the order is: 256 pm (S, 102 pm) < 257.5 pm (N, 75 pm) < 260 pm (C, 77 pm) < 262 pm (O, 73 pm), which indicates the influence of the architecture of the macrocyclic ligand.

There are two examples in which the silver(I) atom is hepta-coordinated.⁵³ Unfortunately the data available at the time of writing was limited to those obtainable from Chemical Abstracts. It is surmised that the Ag(I) atom is in a capped octahedral environment with the AgO₇ chromophore, in which the cap is an oxygen atom of the unidentate NO₃ group, and the octahedron consists of the hexadentate crown O-donor atoms. A similar capped-octahedral environment about silver(I) is found in one other example.⁹⁴ Another two derivatives^{154,155} have an octa-coordinated silver(I) atom, bonded to eight oxygen atoms in one case,¹⁵⁴ consisting of the two tetradentate ligands and resulting in a square antiprismatic structure with a Ag-O distance of 257 pm. In the other case⁵⁵ the coordination

Compound	Cryst. cl. Space gr.	<i>a</i> [pm] <i>b</i> [pm]	α[°] β[°]	Chromo- phore		M-L		L-M-L	Ref.
	ż	<i>c</i> [pm]	γ [°]	·		[pm]		[°]	
Ag ¹ (qr)	or $P2_12_12_1$	2001.1 1726.6 1333.0		AgO ₅	O _p	220 240–270	n	ot given	123
Ag ¹ (peA)	or $P2_12_12_1$	2376.2(4) 1459.1(2)		AgO ₅	O 247	226	ľ	ot given	124
[Ag ^I (meB)] · H ₂ O	4 or $P2_{1}2_{1}2_{1}$ 4	1208.0(2) 1227.8(6) 1498.1(9) 2043.1(9)		AgO ₅	0	not given			125
$[Ag^{I}(C_{17}H_{27}N_{5})]$ ClO ₄ °	m P2 ₁ /c	1164.3(10) 1619.4(9)	117.70(9)	AgN ₅	N	239-251(3)	r	ot given	126
[Ag ^I (C ₂₅ H ₁₇ N ₅)] PF ₆	8 m A2/a	2420.6(11) 749.7(8) 2646.7(17)	104.5(1)	AgN₅ AgN₅	N N	237–255(2) 246.1(17,22) 131.9(6,1.1.)	r	66.5(6,1)	127
[Agı(C ₁₇ H ₂₅ N ₃ S ₂)] BPh ₄	$\frac{m}{P2_1/c}$	1215.1(11) 1313.2(11) 2500.1(12) 1247.9(12)	105.7(1)	AgN ₃ S ₂	Ne Se N _a	231.7(9) 257.8(4,23) 248.9(10,48)	S,S ^b S,N _e S,N _a N _e ,N _a	157.1(6) 85.8(1) 136.9(1,9.2) 107.2(3,20.2) 68.2(3,6)	128
[Ag ^I (C ₂₀ H ₂₇ N ₃ S ₂)] ClO ₄	m P2 ₁ /n 4	1270.8(9) 948.3(7) 1956.9(13)	103.95(6)	AgN ₃ S ₂	Ne Se Na Sa	238.0(6,13) 265.2(3) 252.2(6) 271.3(2)	N _a ,N _a N _e ,N _e N _e ,S _e N _e ,N _a S _e ,N _a S _c ,S _a	135.5(3) 123.6(2) 86.4,145.0(1) 74.6(2,1.2) 82.4,142.1(1) 100.8(1) 82.3(1)	129
[Ag ^I (C ₁₀ H ₂₂ N ₂ OS ₂) (SCN)]	or Pbca 8	2668.1(9) 853.3(5) 1433.2(8)		AgS_3N_2	N _e S _e NCS _a	249.4(7,41) 267.5(2) 285.5(2) 253.9(2)	N _a ,S _a N,N N,S _e S _e ,S _e N,S _a	145.0(1) 73.9(2) 75.9(1,8) 136.2(1,7.6) 109.59(7) 119.2(1,2.0)	130
[Ag ^I (C ₁₀ H ₂₂ N ₂ OS ₂) SCN)]	or Pbca 16	1984.4(5) 1978.8(4) 1663.4(2)		AgS ₃ N ₂	N _e S _e NCS _a	250.4(5,56) 270.5(2) 300.5(2) 252.6(2)	S_e, S_a N,N N,S _e S _e ,S _e N,S _a	102.2(1,7.3) 102.9(2) 74.2 130.1(1,5.2) 72.7(1) 114.0(1,5.3) 118.4(1.2.3)	131
[Ag ^l (AsPh ₃) ₃ (NO ₃)	m P2 ₁ /n 4	1919.3(8) 1400.3(7) 1789 3(7)	96.4(1)	AgAs ₃ O ₂	As O As O	263.4(2,44) 257.5(15,32) 82 9–126 0(4)	As,As O,O	114.0(1,3.1) 43.8(4)	91
$[Ag^{I}(C_{20}H_{42}N_{2}S_{2}) \cdot (MeCO_{2})] \cdot 2H_{2}O$	tr PĪ 2	1081.8(2) 1266.2(2) 1045.7(1)	101.11(1) 103.23(1) 89.77(2)	AgN ₂ S ₂ O	S _e O _e N _a	258.9(1,0) 268.6(2) 245.5(2,2 6)	S,S S,O S,N O,N N,N	160.6(1) 99.7(1,1.7) 90.0(1,8) 90.0(1,3.9) 179.3(1)	132

Table 4 Structural data for mononuclear silver compounds with coordination number five^a

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specific in these columns. ^cThere are two crystallographically independent molecules.

sphere consists of a hexadentate C-donor liand and a bidentate NO₃ group with an O-Ag-O angle of 50° and Ag-O distance of 251.3(5,42) pm.

Finally, there is one example¹⁵⁶ in which two tetradentate C-donor ligands sandwich a Ag(I) atom and two additional positions are taken up by a bidentate NO₃ group, giving deca-coordination about the silver(I) atom (Table 5).

Compound	Cryst. cl. Space gr	<i>a</i> [pm]	α[°] β[°]	Chromo-		M-L		L-M-L	Ref.
	Z	<i>c</i> [pm]	γ[°]	phote		[pm]		[°]	
[Ag ^I (C ₃₄ H ₅₉ O ₁₀)] 0.5H ₂ O	or P2 ₁ 2 ₁ 2 ₁ 4	1625.9 2646.0 891.6		AgO ₆	O ^b	240-300		not given	133
Ag ^I (C ₄₄ H ₇₄ O ₁₄)	m P2 ₁ 2	1501.1 1340.2 1278.9	111.3	AgO ₆	0	256(-,21)		not given	134
$Ag^{I}(C_{47}H_{27}O_{14})$				AgO	0	260(22)		not given	135
$[\operatorname{Ag}^{1}(\operatorname{C}_{9}\operatorname{H}_{21}^{*}\operatorname{N}_{3}^{*})_{2}]\operatorname{PF}_{6}$	tg P4 ₂ /m 2	1013.4(1) - 1277.1(2)		AgN ₆	N	254.3(10,0) 260.7(7,0)		70,2(3,1.1) 109.8(3,1.4) 180.0(5.0)	93
$[Ag^{I}(C_{10}H_{10})_{3}]BF_{4}$	m P2 ₁ /c	1244(2) 1018(2) 1947(2)	95.4(1)	AgC ₆	С	267(3,22)		not given	136
[Ag ^I (C ₂₄ H ₂₄)]CIO ₄	m Cc 4	1870.0(8) 633.1(6) 1845.6(8)	123.9(1)	AgC ₆	С	260(2,7)		not given	137
$[Ag^{I}(C_{6}H_{12}S_{3})_{2}]$ (CF ₃ SO ₃)	or Pnam 4	788.4(2) 1239.6(5) 2354 6(7)		AgS ₆	S	272.5(2,29)		80.0(1,7) 100.0(1,7)	96, 138
$[\mathrm{Ag}^{\mathrm{I}}(\mathrm{C}_{12}\mathrm{H}_{24}\mathrm{S}_6)]\mathrm{PF}_6$	m I2/m 2	529.5(4) 1395.9(10) 1395.1(9)	95.15(10)	AgS ₆	S	266.6(1,0) 278.1(1,0)		78.9(1,1.5)	139
$\begin{array}{l} [\mathrm{Ag^{l}}(\mathrm{C_{6}H_{12}S_{3}})_{2}] \\ \mathrm{[Ag^{l}}(\mathrm{C_{6}H_{12}S_{3}})]_{3} \end{array}$	hx P63	1591(2)		AgS_6	S	272.5(5,28)		82.8(2,7.3) 116.0(2)	140
$(ClO_4)_4$	2	1345.9(2)		AgS₄	see	Table 10		159.7(2)	
$[Ag^{I}\{(SeCH_{2})_{3}\}_{2}]$ AsF ₆	m C2/c 8	2880(4) 942(1) 2240(4)	137.4(1)	AgSe ₆	Se	293(1,15)		66.2-162.5(2)	141
$[Ag_{1}(C_{30}H_{35}N_{2}O_{4})]$	m	1486.1(8)		AgO ₅ N	0	253(2,6)	O,O^b	65.4-142.0(8)	142
$(ClO_4)_2 \cdot 2CH_2Cl_2$	P2 ₁ 2	1481.0(8) 915.7(4)	101.86(5)	0 0	N	258(1)	O,N	69.1(4,1) 132.3(9,3.8)	
$[Ag^{H}{2,6-(CO_{2})} (CO_{2}H)py}_{2}] \cdot H_{2}O$	or Pnna 4	787.4(5) 1094.2(7) 1773 4(12)		AgO ₄ N ₂	0 N	220(1,0) 253(1,0) 215(2,6)	0,0 0,N	97.6(5) 74.1(3,2.5)	143
$[Ag^{II}(2.6-(CO_{2}))]$	m	600.2(4)		AoO.N.	0	213 4(10)	ΟN	78 1(3)	144
$(CO_2H)py_2] \cdot 2H_2O$	$\frac{P2_1}{n}$	1068.2(7) 1284.2(8)	90.83(10)	1604112	O N	298 211.8(10)	0,11	70.1(5)	144
$[Ag^{I}(C_{30}H_{35}N_{2}O_{4})$ (MeCN)]·(CIO ₄) ₂	$\frac{m}{P2} \frac{1}{a}$	1180.5(5) 2677.0(18)	100.37(4)	AgO ₄ N ₂	O N	253(1,3) 272(1)	0,0	65.8(3,1) 112.9(3,10.4)	145
	4	1147.3(3)			MECN	221(1)	n,n O,N	105.0(4) 67.6(3,1) 121.2(4,22.0)	
$Ag^{I}(C_{16}H_{14}N_{2})_{2}$ (NO ₃)	m P2 ₁ /c 2	568.5(3) 792.8(1) 3050.2(5)	94.90(2)	AgO ₄ N ₂					146

Table 5 Structural data for mononuclear silver compounds with coordination number six and higher^{α}

 Table 5
 Continued

$\frac{\overline{Ag^{I}(C_{29}H_{37}NO_{5})]}}{(BF_{4}) \cdot 2Me_{2}CHOH}$	or $P2_12_12_1$	1395 2748		AgO ₄ C ₂	0 C	230-280 not given		not given	147
$[Ag^{I}(C_{12}H_{28}N_{4}S_{2})]$ PF ₆	4 or Pbca 4	1006 1085.9(22) 2024.7(26) 974.2(10)		AgN ₄ S ₂	N S	257.1(11,18) 265.8(5,0)	N,N S,S N,S	104.3(4) 164.3(5) 124.5(2) 75.9(3)	148
[Ag(C ₁₄ H ₂₈ S ₂) ₂] BF ₄	m C2/c 4	1083.8(2) 1172.0(2) 1635.5(2)	105.02(1)	AgC ₄ S ₂	C S	257.0(11,10) 250.4(3,0)	C,C S,S C,S	113.2(2) 30.7(3) 128.5(2) 78.9(3) 105.2(3)	149
$\frac{[Ag'(C_{14}H_{28}N_2S_4)]}{PF_6}$	$\substack{\mathbf{tg}\\\mathbf{P4}_{1}2_{1}2\\4}$	$\frac{1012.8(3)}{2171.1(4)}$		AgS ₄ N ₂	S N	261.1(2,0) 280.2(2,0) 258.6(3,0)	S,S N,N S,N	87.0(1,6.0) 73.7(1) 74.0(1)	150
$\begin{array}{l} [{\rm Ag}^{\rm I}({\rm C}_{12}{\rm H}_{26}{\rm N}_{2}{\rm S}_{4})] \\ {\rm PF}_{6} \end{array}$	or Pcab 8	1673.3(2) 1750.2(1) 1470.3(1)		AgS ₄ N ₂	S N	269.7(4,77) 253.3(10) 281.7(15)	S,S S,N	$149.62(6) \\81.3(1,1) \\108.5(1,2.3) \\146.2(1,2.7) \\73.1(3,2.9) \\106.9(3,6.7)$	151
$\begin{matrix} [Agr(C_{14}H_{30}N_2S_4)] \\ BPh_4 \end{matrix}$	m P2 ₁ /n 4	1075.3(1) 1905.7(2) 1893.6(2)	106.04(1)	AgS_4N_2	S N	264.0(4,57) 281.9(3) 251.7(11) 277.8(10)	N,N S,S S,N	172.9(4) 82.3(1,1.4) 96.7(1,8) 169.2(1,2.3) 73.8(3,1.6)	151
[Ag ^I (dttp)]BPh ₄	tr P1 2	1386.3(9) 1096.5(11) 1499.0(12)	109.0(1) 99.2(1) 65.0(1)	AgN ₃ S ₃	N S	241.0(8,12) 261.3(9) 266.2(3,8) 294.9(4)	N,N S,S N,S	$\begin{array}{c} 116.1(3) \\ 65.5(2,5.0) \\ 130.5(3) \\ 81.9(1,6.0) \\ 73.4(2) \\ 156.1(2) \end{array}$	152
$[Ag^{1}(C_{20}H_{24}O_{6}) (NO_{3})] \cdot 0.5BuOH \cdot 0.5H_{10}O_{10}$	m P2 ₁ /n	1842.7(4) 1407.9(2) 1847.1(3)	93.56(3)	AgO ₇	O O ₂ NO	270 250		190.1(2)	153
$Ag^{I}(C_{25}H_{24})$ (CF ₃ SO ₃)	m P2 ₁ /a	3742.6(3) 1044.8(2) 2390.9(2)	90.3(1)	AgC ₆ O	C O	259(1,19) 249(1)		not given	94
[Ag ^I ([12]crown-4) ₂] AsF ₆	m C2 2	1047.1(3) 1153.9(3) 980.1(3)	91.83(3)	AgO ₈	0	257		not given	154
$[Ag(C_{13}H_{20})(NO_3)]$	m P2 ₁ /c	1207.4(2) 807.1(2) 1422.9(4)	93.49(2)	AgC ₆ O ₂	C O	240.4(6,69) ^c 251.3(5,42)	0,0	49.9(1) c	155
$Ag^{I}(C_8H_8)_2(NO_3)$	m C2/c 4	1029.6(2) 975.2(1) 1512 2(4)	95.59(2)	AgC ₈ O ₂	C O	271.8(4,24) 251.8(3,0)		d	156
Ag ¹ (pctt)	m P2 ₁ /c	1618.9(2) 981.4(1)	60.92(2)						157a
$[Ag^{I}(tbc)_{2}](CF_{3}SO_{3}) \cdot tbc \cdot 0.5C_{6}H_{14}$	m P2 ₁ /n 4	1536.9(3) 2817.7(5) 2675.1(4)	90.61(1)	AgC _x	С	274(2,7)		not given	157b

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specific in these columns. ^cThe value of midpoint C=C bond; O-Ag-(C=C) = 97.5-148.1(2)° and (C=C)-Ag-(C=C) = 97.3(2,1.6) and 119.8(2)°. ^d (C-C)-Ag-(C-C) = 71.1, 100.2, 113.6 and 164.7°.

3. BINUCLEAR SILVER COMPOUNDS

3.1 Coordination number two

Structual data for these complexes are summarized in Table 6. The structures are arranged in order of increasing Ag-Ag distance. Bidentate ligands, each forming three-atom bridges, bring the two silver(I) atoms within 265.4(1) pm in the colourless derivative $[Ag\{2-(Me_3Si)_2C\}(py)]_2^{158}$ which is the shortest Ag(I)-Ag(I) distance observed in the series of binuclear silver compounds. The associated N-Ag-C angles are 174.5(1)°. This type of bridging is common to binuclear di-coordinated silver compounds, the exceptions being $[Ag(tolN_5tol)]_2$ (Table 6) and (costunolide) AgNO₃¹⁷¹ where the silver(I) atoms are linked by the C atoms of costunolide.

Bidentate ligands and a silver oxidation state of +1 are the only features of these derivatives. The mean Ag-L bond distances are; 215.5(50,40) pm (L = N, 75 pm) < 217.6(7,7) pm (C, 77 pm) < 222.3(13,27) pm (O, 73 pm) < 238.3(3,3) pm (P, 106 pm); which largely follows the trend of covalent radius of the coordinated atom. The L-Ag-L bond angles are in the range 150° to 178°. The Ag(I)–Ag(I) distances range from 265.4(1) to 354(2) pm, compared to the corresponding Cu(I)–Cu(I) distances of 241.2 to 635.0 pm⁴² and the Au(I)–Au(I) distances of 276.1 to 296.7 pm⁴³

Two crystallographically independent molecules, differing mostly by degree of distortion and Ag-Ag distance are recorded.¹⁶⁴ The derivative $[Ag(C_8H_6N_2)]_2(ClO_4)_2$ has been independently studied by two groups^{162,163} with comparable results.

3.2. Coordination number three

Structural data for these derivatives are listed in Table 7. Two of the derivatives^{185,187} have one of the silver(I) atoms in a tetrahedral environment. The twenty-two derivatives are listed in order of increasing Ag–Ag distance.

In dark yellow $[Ag{EtOC_6H_4)_2N_3}(py)]_2$,¹⁷² two triarsenido ligands bridge two Ag(I) atoms with each of their N atoms forming an eight-membered heterocycle Ag₂N₆, with a Ag-Ag distance of 272.6(1) pm. To each Ag(I) atom an additional pyridine ligand is coordinated, the Ag-N distance being 245.5(5) pm. The AgAg distance in this complex represents the shortest value found in the binuclear tri-coordinated silver(I) derivatives. This type of bridging is also found in other cases.^{173-175,181,187}

In the $[Ag_2I_4]^{-2}$ anion^{31,176} two iodine atoms serve as bridges between Ag(I) atoms. This type of bridging, involving two bridging ligands, is the most common in this series. Other halogens also serve as bridges, for example, two bromine atoms^{179,180} and two chlorine atoms.^{179,180} In two cases bridging is accomplished by a pair of sulphur atoms.^{177,178} The Ag-Ag distances and angles are interrelated in the above examples. As the Ag-Ag distance increases, the Ag-L-Ag angle opens and the μ L-Ag- μ L angle closes. For example: 302.1 pm, 65.6° and 114.4°;¹⁷⁶ 355.7 pm, 79.0° and 101.0°;³¹ 365.9 pm, 88° and 92°.¹⁷⁹ In the colourless crystals of [Ag'(C₈H₆N₂)₂]₂(NO₃)₂¹⁶³ each Ag(I) atom is trigonally surrounded by the N atoms of one unidentate and two bridging phtalarsine molecules to form a six-membered metallocycle Ag₂N₄ with a long Ag-Ag distance of 349.1(1) pm. In the remaining three examples^{182,184,185} the Ag(I) atoms are each bridged in a unique fashion.

Compound	Cryst. cl. Space gr	<i>a</i> [pm]	α[°] β[°]	Chromo-		M-L	M-M	L-M-L	Ref.
	Z	<i>c</i> [pm]	γ[°]	phote		[pm]	[pm]	[°]	
$\frac{[Ag^{I}\{2\text{-}C(SiMe_{3})_{2}\cdot C_{5}H_{4}N\}]_{2}}{C_{5}H_{4}N\}]_{2}}$	or Pcab	1631.8(9) 1611.5(10) 1203.3(6)		AgNC	N ^b C	216.0(5) 215.4(5)	265.4(1)	174.5(1)	158
[Agu{(Me ₃ SiN) ₂ CPh}] ₂ (at 263 K)	tr P1 2	1203.5(5) 1132.5(5) 1221.4(6) 1407.9(8)	107.85(5) 106.63(4) 91.54(3)	AgN ₂	N	212.4(2,6)	265.5(2)	170.2(1,1)	159
[Ag ^I (PhN ₃ Ph)] ₂	m C2/c 4	2602.3(7) 547.1(7) 1693.4(6)	118.13(2)	AgN ₂	N	215.0(4,5)	266.86(1)	167.7(1)	160
$[Ag^{I}(C_{15}H_{15}N_{2})]_{2}$	or Pnaa 4	703.97(8) 1368.9(2) 2903.9(3)		AgN ₂	Ν	210.5(5,11)	270.5(1)	168.8(2)	161
$[Ag^{I}(C_{8}H_{6}N_{2})]_{2}$ (CIO ₄) ₂	m P2 ₁ /n 2	1601.7(7) 1042.7(4) 575.2(2)	99.90(3)	AgN ₂	N	219.5(15,16)	274.8(2)	167.82(50)	162
$[Ag^{I}(C_{8}H_{6}N_{2})]_{2}$ (CIO ₄) ₂	m P2 ₁ /a 2	1611.4(3) 1046.2(2) 577.2(1)	100.77(2)	AgN ₂	N	218.8(3,3)	275.6(1)	not given	163
$\begin{matrix} [Ag^{I}(C_{15}H_{21}OOO_{2})]_{2} \cdot \\ 2H_{2}O^{c} \end{matrix}$	$m P2_1/c$	1576 1871	103.1	AgO ₂	0	225(2,5)	277.8(5)	158(1)	164
[Ag ^I (PhCO ₂)] ₂	or $P2_12_12_1$	629.7(5) 898.7(6) 2377.1(15)		AgO ₂ AgO ₂	0	222(2,2)	290.2(3)	158.6(7,1.7)	165
[Ag ^I (pfb)] ₂	m C2 2	646(1) 901(2) 1311(4)	100.2(3)	AgO ₂	μO	225(-,0)	290(2)	160	166
$[Ag^{l}(4\text{-}OHC_{6}H_{4} CO_{2})]_{2} \cdot H_{2}O$	m P2 ₁ /a 2	611.3(7) 906.7(17) 1421.8(20)	103.74(9)	AgO ₂	μO	221.0(8,4)	291.5(8)	157.9(7)	165
$[Ag^{I}(C_{6}F_{5}OCH_{2} CO_{2})]_{2}$	m P2 ₁ /a 2	599.2(3) 3022(2) 527.7(2)	106.42(5)	AgO ₂	0	221.7(3,14)	294.3(1)	161.6(2)	167
$[Ag^{I}{CH(CO_{2}Et)_{2}} PPh_{2}]_{2}$	tr P 1 1	961.1(2) 1001.0(2) 1125.3(2)	83.74(2) 83.42(2) 69.99(2)	AgC ₂	С	217.6(2,7)	295.3(1)	178.2(1)	168
$[Ag^{I}(CH_{2}PPh_{2}S)]_{2}$	m C2/c 4	2420(1) 906.7(4) 1210.1(6)	105.79(1)	AgCS	C S	218.3(9) 238.2(3)	299.0(2)	173.7(3)	169
$[Ag^{l}(tmpm)]_{2}(PF_{6})_{2}$	or Pbca 4	1117(1) 1768(5) 1315(2)		AgP ₂	Р	238.3(4,3)	304.1(2)	174.3(2)	170
[Ag ¹ (to 1N ₅ tol)] ₂	m P2 ₁ /n 4	525.7(4) 1236.1(3) 2189.6(9)	90.88(5)	AgN ₂	N	217.0(10,10)	354.17(2)	155.0(5,5.4)	160
[Ag ¹ ₂ (gly)(glyH)]NO ₃	m P2 ₁ /c 2	504(1) 2802(3) 578(1)	93.83(1)	AgO ₂	0	219		160	17

Table 6 Structural data for nuclear two-coordinate silver compounds^a

^{*a*} Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^{*b*} The chemical idenity of the coordinated atom/ligand. ^{*c*} There are two crystallographically independent molecules.

compounds ^a
silver
three-coordinate
binuclear
for
data
Structural
Table 7

Downloaded At: 16:44 23 January 2011

			1	commo.						
Compound	Cryst. cl. Snace er	$\begin{bmatrix} pm \end{bmatrix}$	α[°] β[°]	Chromo- phore		M-L	[md] M-M [•1 M-I-M		-M-L	Ref.
	Z Z	c [bm]	γ[°]	piint		[md]	μL-M-μL [°]		[。]	
$\label{eq:constraint} \begin{split} & [\text{Ag}^I\{(\text{EtOC}_6H_4)_2N_3\}\text{py}]_2 , \\ & (\text{py})_2 \end{split}$	m P2 ₁ /n	1067.1(7) 1764.5(9) 1373.0(0)	106.46(7)	AgN ₃	N ^b N(yy)N	218.1(5,5) 245.5(5)	272.6(1)	10	7.(2,1) 8.5(2)	172
[Ag ^I (2-OHC ₆ H ₄ CO ₂)] ₂	т Р2 ₁ /с	740.3(1) 882.4(7)	107.74(2)	AgO ₃		285.5(1)				173
[Ag ^I (2-0HC ₆ H₄CO ₂)] ₂	د P2 ₁ /c	1000.1(1) 740.5(1) 882.6(2) 1068 372)	107.48(4)	AgO ₃						174
$[Ag^{1}{2,6-(OH)_{2}} \cdot C_{6}H_{3}CO_{2}]_{2}$	т Р2 ₁ /п	732.2(1) 1030.7(2) 070.1(2)	111.98(2)	AgO ₃						174
[Ag ^I (C ₅ H ₆ N ₅)(ClO ₄)] ₂ · (ClO ₄) ₂	т т Р2 ₁ /с 4	735.6(6) 1301.9(8)	117.43(5)	AgN ₂ O	zo	217.5(10,20) 263.5(5)	300.2(4)	N,N ^b N,O	164.1(2) 84.7(2) 109.9(2)	175
$[Ag^{I}_{2}I_{4}]$. [Cu $(C_{13}H_{14}N_{2}O)_{2}]$	- 1- -	854.0(1) 1002.8(1) 1058.4(2)	110.22(1) 95.47(1) 93.42(1)	AgI ₃	I Jul	267.9(1) 279.0(1,10)	302.1(1) 65.6(1) 114.4(1)	I,µI	122.8(1,1.3)	176
[Ag ^l (tu)(SCN)] ₂	n C2/c 8	1107.2(3) 1383.8(4) 1398.3(4)	111.65(3)	AgS ₃	NCS µS	260.8(2) 247.2(2,10)	309.7(1) 66.1(1) 122.2(1)	S,µS	116.3(1,8)	177
[Ag ¹ (S ₆)] ₂ (PPh ₄) ₂	5 m 7 2	1093.8(4) 1397.7(5) 1701.7(6)	105.11(3)	AgS ₃	s hS	241.5(2) 250.0(2) 260.3(2)	344.2(1) 82.9(1) 97.1(1)	S,µS	114.6(1) 148.1(1)	178
[Ag ^l (C ₈ H ₆ N ₂) ₂] ₂ (NO ₃) ₂	т Р2 ₁ /а 2	1360.3(2) 1596.1(2) 732.8(1)	99.10(2)	AgN ₃	z	226.3(5,14) 233.2(4)	349.1(1)	N,N	124.1(2)	163
[Ag ^l ₂ Br ₄](PPh ₄) ₂	- m 2_1/n	1454.6(4) 807.2(2) 1985 4(5)	102.73(2)	AgBr ₃	Br μBr	248.1(1) 261.4(1) 274.00	354.9(2) 82.96(3) 97.04(3)	Br,µBr	123.69(4) 139.16(4)	179
$[K(crypt-2,2,2)]_{2} \cdot [Ag^{1}_{2}I_{4}]$	- 7 <u>1</u>	1133.0(2) 1236.5(2) 1034.3(7)	103.49(1) 101.72(2) 86.66(1)	AgI ₃	I H	267.2(2) 279.5(1,6)	355.7(2) 79.02(3)	l,µl	129.2(1,1.6)	31
(PPh ₄) ₂ [Ag ^l ₂ Br ₄]	m P2 ₁ /n 2	1452.5(9) 791.4(3) 2001.0(10)	103.16(5)	AgBr ₃	Br μBr	249.1(1) 261.7(1) 275.2(2)	357.8(2) 83.53(4) 96.47(4)	Br,µBr	122.99(4) 140.38(3)	180

110

C.E. HOLLOWAY et al.

Table 7 Continued										
(PPh ₄) ₂ [Ag ¹ ₂ Cl ₄]	т Р2 ₁ /п	1419.0(9) 806.2(3) 1017 7/101	101.64(4)	AgCl ₃	ĘŪ	235.8(2) 244.7(1) 279.2(7)	365.7(2) 88.27(5) 91.73(5)	CI,µCI	118.74(5) 149.53(5)	180
(AsPh ₄) ₂ [Ag ¹ ₂ Cl ₄]	52 ₁ /n	1428.0(6) 820.0(4) 1911.8(8)	101.19(3)	AgCl ₃	E G F G	235.9(2) 235.9(2) 244.6(2) 280.9(2)	365.9(2) 87.97(6) 87.97(6)	CI,µCI	118.91(6) 149.06(6)	179
$[Ag^{I}(CF_{3}CN_{5}S_{3})_{2}]_{2} \cdot (AsF_{6})_{2}$	- Pit	747.8(8) 985.9(7)	99.98(2) 90.75(2) 90.70(3)	AgN ₃	z	225.2(5,29) 249.7(4)		N,N	105.6(1,11.2) 148.1(2)	181
[Ag ^I (Ph ₂ S ₂) ₂] ₂ (AsF ₆) ₂	- PT	(0)(2)(4) 1090.2(4) 1097.6(6)	92.43(2) 112.82(4) 92.43(2)	AgS ₃	s µS	253.4(2) 257.1(2,68)	(7)8 011	S,µS	94.1(2) 138.4(2)	182
[Ag ^I {µ-(PhPH ₂)}· (PhPH ₂)] ₂ (AsF ₆) ₂	- Pi	919.0(4) 1109.8(4) 11109.8(4)	97.48(3) 107.25(3) 107.21(3)	AgP ₃	ч ЧР	244.3(4) 246.8(3,23)	114 5(2)	Ρ,μΡ	122.8(2,9.2)	183
$[Ag^{I}(Ph_{2}Se_{2})]_{2}(AsF_{6})_{2}$	- 14 -	1067.6(3) 1125.3(3) 1367 5(4)	66.40(2) 89.67(2) 71.40(2)	AgSe ₃	Se µSe	261.6(2) 258.0(2) 271.1(2)	(7)6.F11	Se,µSe	94.3(2) 138.3(2)	182
$[Ag^{I}_{2}(C_{24}H_{32}N_{4}O_{2}S_{2}) \cdot (H_{2}O)_{2}](CIO_{4})_{2}$	п С2/ <i>с</i>	2794.1(16) 861.2(6) 1535.9(0)	102.92(5)	AgN ₂ O	$_{\rm H_2O}^{\rm N}$	222(4,5) 222(4,5) 272(7)	(7)0.711	N,N N,O	163.5(15) 96.7(2,3.0)	184
$[Ag^{l}_{2} \{S_{2}C_{2}(CN)_{2}\} \cdot (PPh_{3})_{4}]$	н Р2 ₁ /с 4	1228.9(8) 2383.3(9) 2317 9(11)	101.32(4)	AgP ₂ S	P µS	248.4(7,21) 247.8(7)	439.2 117.7(2) 82 2(2)	P,P P,S	123.1(2) 118.4(2,9,8)	185
				AgS_2P_2	P S S	250.7(7,39) 256.8(7) 265.3(7)	P,S S,iiS	P,P 111.4(2,5.0) 102-372)	119.1(2)	
$[Ag^{I}_{2}(pp)_{2}F]BF_{4}$	tr P]	1255.5(2) 1332.2(2) 1304.9(3)	97.97(1) 109.31(2)	AgP_2F	ы Ч. Б. Б.	243.3(6,44) 243.3(6,44) 254.9(9,1)	500.9(1) 158.6(5)	Р,Р Р,Р Р,F	144.2(2,7) 107.2(3,8.9)	186
[Ag ^I (C ₉ H ₈)(ClO ₄)] ₂ (ClO ₄)	or Pbnm 8	1539.0(2) 852.5(1) 1521 3(1)	(1)7(*) 11	AgC ₂ O	00	247(2,0) 246(2)		c,c C,0	128.0(1.2) 116.0(1.4)	187
	0	(1)(-)17(1		AgC ₄	C	241(2,5)		C,C	99.2(9) 162.2(1.0)	
^a Where more than one chem and the second is the maxim	nically equ num devi:	livalent distantion from the	ce or angle is mean. ^b The	present, ti chemical	he mean dentity e	value is tabula of the coordina	ted. The firs ted atom/lig	st number in pa	renthesis is the e.	s.d.,

SILVER COMPOUNDS

111

From Table 7 it can be seen that silver occurs only in the oxidation state of +1, but the ligands involved are uni-, bi-, tri- and tetradentate.

In general, the mean Ag-L(terminal) distances are shorter than the Ag-L(bridge) distances. For example, in the series where L is halogen they both follow the trend of the covalent radius of the halogen, the values being 235 pm (Cl) < 248.6 pm (Br) < 267.6 pm (I), and 262.4 pm (Cl, 99 pm) < 267.6 pm (Br, 114 pm) < 279.3 pm (I, 133 pm), for terminal and bridging, respectively.

The derivative $(PPh_4)_2[Ag_2Br_4]$ exists in two isomeric forms^{179,180} which are distortion isomers of each other.

3.3. Coordination number four

Structural data for over fifty binuclear silver(I) compounds with coordination number four are summarized in Table 8. Some examples^{214,223,229} contain two silver(I) atoms of higher coordination number, which are cross listed with the appropriate table. Two of the examples^{230,231} are organometallic compounds.

There are several types of bridging, with the distorted edge-shared bis-tetrahedral structure being the most common. The crystal structure of $[Ag(tu)_3]_2(ClO_4)_2^{188}$ has two bridging S-atoms of thiourea molecules bringing the silver(I) atoms to within 284.5(1) pm, and Ag-S-Ag angles of $64.3(1)^\circ$. This is the shortest Ag(I)-Ag(I) found in this series of compounds. In another five distance examples^{194,203,206,208,214} two sulphur ligands also serve as bridges. In three examples the bridges involve two oxygen ligands.^{212,213,216} A pair of halogen atoms also serve as bridges in several cases, for example, chlorine,^{195,196,204,207,209,210} bromine,^{195,197,205} and iodine.^{121,194,195,211} In this series there are relationships between the Ag-Ag distance, the Ag-L-Ag angles and the μ L-Ag- μ L angles similar to those found in the binuclear tri-coordinate species of the previous section. The Ag-Ag distance increases as the Ag-L-Ag angle opens and the μ L-Ag- μ L angle closes. For example, in the sulphur-bridged cases the values are; 284.5 pm, 64.3° and 112° ,¹⁸⁸ 307.6 pm, 70.5° and 109.5°,⁹⁴ 344.1 pm, 80.3° and 99.7°;²⁰³ 373.8 pm, 89.2° and 90.8°.²⁰⁶ For the chlorine bridges the values are; 307.4 pm, 71.2° and 98.1°,¹⁹⁶ 350.7 pm, 84.2° and 95.8°,¹⁹⁵ 375.0 pm, 90.9° and 89.4°²⁰⁷ In the bromine-bridged examples the values are 308.0 pm, 68.5° and 111.6°, ¹⁹⁷ 349.8 pm, 80.1° and 99.8°.195

A second type of bridging involves two bidentate ligands serving as tri-atom bridges, to give an eight-membered metallocycle $Ag_2O_4C_2$,^{189,190} $Ag_2S_4C_2$ ¹⁹³ $Ag_2P_4C_2$ ¹⁹⁸ $Ag_2O_2N_2C_2$ ²⁰² and $Ag_2N_2S_2C_2$.²²⁰ In one case,¹⁸⁹ two carboxylate groups of β -alaninate moieties bring the silver(I) atoms to within 285.5(4) pm, with μ O-Ag- μ O angles of 161.6(8)°. This is the shortest Ag-Ag distance found in this series.

In a third type, the bridging consists of two bidentate ligands forming a ten-membered heterocycle $Ag_2N_4C_4^{192}$ and $Ag_2P_4C_4^{221}$ A twelve-membered heterocyclic ring is also found with the chromophores $Ag_2N_4C_6^{191,224}$ and $Ag_2P_4C_6^{225}$ and $Ag_2S_4C_6^{79}$ and in one case a sixteen-membered heterocycle is found.¹⁹¹

There are some examples where single bidentate ligands serve as a bridge, for example, Ag-P-P-Ag,²¹⁸ Ag-S-C-Ag²²³ and Ag-P-C-C-P-Ag.²²² There is one example where two silver(I) atoms are bridged by a single chlorine atom and by the two bis(diphenylphosphino)methane ligands in a syn-syn arrangement.

The data in Table 8 indicate silver atoms in only the +1 oxidation state. The ligands range over uni-, bi-, tri-, tetra- and octadentate. In the series of uni- and bidentate ligands the mean Ag-L distances increase in the sequence: 235.9 pm (uni-) and 233.4 pm (bi-, N) < 245.0 pm (uni-) and 245.2 pm (bi-, P) < 250.5 pm (uni-) and 250.8 pm (bi-, O) < 253.9 pm (unidentate) and 252.5 pm (bidentate, S). In the series of N multidentate ligands, the mean Ag-N distance increases in the sequence: 233.4 pm (bi-) < 235.9 pm (uni-) < 236.7 pm (tetra-) < 239.2 pm (octadentate). The mean Ag-L(bridge) distances increase in the order: 250.0 pm (LO) < 265.0 pm(Cl) < 273.2 pm (Br) < 274.2 pm (LS) < 286.5 pm (I). Thus for singly-bridging atoms the bond distances follow the order of covalent radii of the respective atoms, 99 pm (Cl) < 114 pm (Br) < 133 pm (I). However, this does not follow for the Oand S-donor ligands suggesting that steric hindrance of the rest of the ligand is a factor in these bridge distances. Steric effects can also be seen in the series of triphenylphosphine adducts, this molecule being the most common unidentate ligand in this series of silver(I) derivatives. For the AgP_2X_2 derivatives, the mean Ag-P distance of 248.1(33,65) pm is about 6.5 pm longer than those found in the AgPX₃ derivatives at 241.6(24,29) pm).

There are hetero-, bi-, tri- and tetradentate ligands, with O plus N atoms and N plus S atoms in the first case, two O atoms plus one N atom in the second case, two O plus two S atoms and two N plus two S atoms in the third case. The mean Ag-L distances increase with covalent radius of the coordinated atom. The shortest Ag(I)-Ag(I) distance of 284.5(1) pm found in the binuclear tetrahedrally-coordinated derivatives is longer than either of those found previously in the digonally and trigonally-coordinated Ag(I) derivatives, at 272.6(1) pm and 265.4(1) pm, respectively. These shortest Ag(I)-Ag(I) distances are themselves longer than the corresponding values in the Cu(I) derivatives,⁴² which are 241.2(1) pm (digonal), 243.3(1) pm (trigonal) and 237.1(1) pm (tetrahedral). This corresponds with the relative values of the covalent radii of the metal atoms at 138 pm (Cu) and 153 pm (Ag). It is also noted that while the Ag-Ag distances.

The compound $[Ag(PPh_3)(py)I]^{195}$ exists in two isomeric forms differing by degree of distortion. There is one example, $[Ag(dppm)(NO_3)]_2$ which was independently studied by two groups, ^{198,199} however the latter information was only obtainable from Chemical Abstracts¹⁹⁹ and a full comparison was not possible.

3.4 Coordination numbers five and higher

Structural data for binuclear silver compounds with coordination numbers five, six and seven are given in Table 9. In $[Ag(glyH)(NO_3)]_2$ two silver(I) atoms are bridged by the carboxylate oxygens of the glycine molecules in a syn-syn arrangement, bringing the Ag(I) atoms to within 287.7(6) pm with μ O-Ag- μ O angles of 163.1(7)°. This represents the shortest metal-metal distance observed in this series and is about 3.2 pm longer than the shortest values found in tetrahedrally-coordinated binuclear derivatives (Table 8). In other examples, two nitrogen atoms of a macrocyclic ligand,¹⁹¹ two sulphur ligands,²³⁴ and two oxygen ligands^{91,235} serve as bridges. There are eight examples in which both silver atoms are penta-coordinate, and two examples^{191,233} in which one of the silver atoms is hexa-coordinate. There are four examples²³⁹⁻²⁴² with both silver atoms hexa-coordinated, and one derivative containing hepta-coordinate silver(I).²⁴³ In an example with a

2011
January
23
16:44
At:
Downloaded

Table 8 Structural data for binuclear tetra-coordinated silver compounds^a

114

Compound	Cryst. cl. Snace or	a [pm] b [pm]	α [°] Β [°]	Chromo- nhore		M-L	M-M [pm] M-1-M		T-M-T	Ref.
	Z Z	c [bm]	γ[°]	aroud		[md]	oL-M-µL [°]		[.]	
$[Ag^{l}(tu)_{3}]_{2}(ClO_{4})_{2}$	т С2/с 8	1953.7(8) 1343.6(6) 1079.1(5)	103.57(5)	AgS4	Su L	254.7(2,23) 267.4(2,11)	284.5(1) 64.3(1) 112_3(1)	S,S ^b S,μS	115.9(1) 107(1,6.5)	188
[Ag ¹ (β-ala)(NO ₃)] ₂	m P2 ₁ /n	665.6(5) 828.0(5) 1297 5(4)	94.90(3)	AgO4	02NO 0	258(3,1) 220.4(19,6)	285.5(4) 	u	ot given	189
[Ag ¹ (pfc)(H ₂ O)] ₂ ·2H ₂ O	ъ П	871.46(9) 988.5(1) 1381.2(2)	69.17(1) 67.54(1) 84.69(1)	AgO ₃ N	H ₂ 0 N	245.4(4) 230.7(3,22) 243.1(3)	290.1(1) - 140.8(2)	N,001,0	93.0(2) 95.4(1,9.5) 108.1(7.10.7)	190
[Ag ¹ ₂ (C ₃₆ H ₅₇ N ₈)](ClO ₄) ₂ · 0.5H ₂ O	PI 12	1417.1(14) 1832.3(16) 1249.5(23)	99.20(12) 120.13(11) 116.35(7)	AgN4	z	234.9(8,27) 248.1(9,68)	290.7(4)		65.7- 150.0(4)	191
[Ag ¹ (tch)] ₂ (CF ₃ SO ₃) ₂	m P2 ₁ /n 4	1726(1) 1508(2) 1996.0(17)	106.15(4)	AgN ₂ S ₂	ZS	215.6(10,6) 295.5(4,40)	290.9(1)	X,S X,S X,S	169.1(4,1) 82.1(1,1.3) 77.0- 115.6(3)	192
[Ag ^I (µ-Et ₃ PCS ₂). (Et ₃ PCS ₂)](CIO ₄) ₂	ь РТ	1337.8(8) 1356.2(8) 761.7(5)	80.38(4) 85.60(4) 67.44(4)	AgS ₄	ss	248.1(2,13) 266.8(2) 281.2(2)	291.4(4)		65.5(1) 107.0(1,7.9) 136.5(1)	193
[Ag ^t (PPh ₃)(py)]] ₂	m C2/c 4	2714.5(6) 1454.8(3) 1131.6(4)	94.83(2)	Agl ₂ NP	Zd∃	233.5(7) 243.8(2) 286.4(1.13)	295.6(1) 62.2(3,3) 117.83(3)	N d l	99.6(2,4) 110.8(1,9) 117.6(2)	121
[Ag ^l (tsc) ₂]] ₂	т С2/с 4	1288.6(3) 868.7(1) 2000.6(16)	105.36(3)	AgS ₂ l ₂	EN	259.0(2,20) 285.4(1,36)	295.9(2) 62.43(3) 117.6(1)	u	ot given	194
[Ag ^l (PPh ₃)(py)l] ₂	m C2/m	$\frac{1133.3(7)}{1456.9(6)}$	108.47(4)	Agl ₂ NP	ZAJ	233.8(6) 244.5(2) 286.9(1.0)	295.9(2) 62.09(3) 117.91(4)	N,I N,P N,P	99.6(1) 110.83(3) 117.6(2)	195
[Ag ¹ 2(dpph) ₃ Cl ₂]	m P2 ₁ /c	1459.9(3) 1838.8(5) 2113.4(4)	125.12(1)	AgCl ₂ P ₂	Ld Di	234.2(3,10) 266.0(6,42)	307.4(2) 71.2(1,4) 98.1(1)	P,CI	125.4(1) 107.4(1,5.3)	196
				AgCl ₂ NP	ч ГС Р	243.6(4) 245.1(9) 262.0(7,19)		P,C,C,P	126.7(2) 106.7(2,9.6) 100.2(1)	

C.E. HOLLOWAY et al.

TAUL O COMMAN										
[Ag ^l (tsc) ₃] ₂ Cl ₂	tr PT	972.8(3) 1255.8(3) 653.9(1)	97.20(1) 102.07(8) 69 56(7)	AgS ₄	S µS	256.3(2,25) 252.7(2) 278.8(3)	307.6(1) 70.5(1) 100 5(1)	ц I	lot given	194
[Ag ^l (2-Mepy) ₂ Br] ₂	ч п Г	924.9(9) 918 5(8)	109.67(7) 118.38(5) 93.73(7)	AgN ₂ Br ₂	N µBr	273.8(4,3)	308.0(5) 68.45(8) 111 55(8)	N,N N,Br	117.4(5) 107.1(4,7.3)	197
[Ag ^l (dppm)(NO ₃)] ₂	с С2/с	1268.7(4) 1699.7(3)	100.73(3)	AgO_2P_2	0 4	241.6(5) 268.9(6)	308.5(1)	0,0 P,P	48.9(2) 138.3(1)	198
[Ag ¹ (dppm)(NO ₃)] ₂	4 E C -	2262.7(6) 1270.4(1) 1702.8(2)	100.66(1)	AgO ₂ P ₂	Ъ	242.0(2,10)	308.9	0,F	106./(1,12.6)	199
$[\mathrm{Ag}^l(\mathrm{C}_{19}\mathrm{H}_1_7\mathrm{N}_7\mathrm{Cl})]_2\cdot(\mathrm{PF}_6)_2$	е С2/с	2203.4(2) 2385.4(3) 1308.3(1)	98.36(1)	AgN4	z	232.2(5,2) 237.1(5) 247 8(4)	314.1(1)	Z,Z	70.1(1,1) 124.4(1,15.9)	200
[Ag ^I (pch)] ₂ (CF ₃ SO ₃) ₂	м Р2 ₁ /с	1041.2(2) 3331.0(8)	105.38(2)	AgN4	Z	242.0(4) 224.6(12,6) 243.8(11,17)	325.4(2)	N,N	115.4(1) 116.0(4,1) 146.9(4,2.6)	201
[Ag ^l (PPh ₃)(py)l] ₂	4 m P2 ₁ /c	1117.6(2) 1117.6(2) 1728.5(1)	121.75(1)	Agl ₂ NP	ZA	241(1) 244.0(6) 284.472 30)	334.3(2) 71.96(5)	N,I N,P N	101.5(4,1.4) 115.3(1,7.0)	195
[Ag ^l (Mccyt)(NO ₃)] ₂	, ₽ <u>1</u>	1047.4(3) 1114.1(3)	97.33(2) 95.82(2) 76.76(2)	AgO ₃ N		222.5(2) 222.5(2) 241.8(3,51)	337.0(1) 95.1(1)	1,1,1	(+)7.011	202
[Ag ¹ ₂ {(EtO) ₂ PS ₂ }{(PPh ₃) ₂]	ء m P2 ₁ /c	975.3(8) 1843.8(12) 1843.8(12)	119.0(1)	AgS ₃ P	P 20210	240.4(2) 240.4(2) 250.2(2)	344.1(1) 80.29(5) 99.71(6)	S,µS S,P µS,P	83.7(1,10.0) 109.66(6) 128.5(1,14.2)	203
[Ag ^l (PPh ₃)(py)Br] ₂	m P2 ₁ /c	1115.4(2) 1676.4(2)	122.45(1)	AgBr ₂ NP	Za	282.1(2) 239.1(5) 241.4(2)	349.8(1) 80.14(2)	Br,N Br,P	99.3(1,1.1) 119.6(1,4.2)	195
[Ag ^l (PPh ₃)(py)Cl] ₂	$\frac{2}{P2_{1}/c}$	1118.4(1) 1118.4(1) 1649.8(3)	122.87(1)	AgCl ₂ NP	a Z d	240.3(4) 240.3(4) 240.0(2)	99.80(3) 350.7(1) 84.18(4)	, N Q X	114.9(2) 97.4(1,1.5) 122.7(1,9)	195
[Ag ^l {Ph ₂ PC ₂ H ₄) ₂ S}CI] ₂	ъ <u>г</u> ,	1156.0(4) 1156.0(4) 1006.3(2)	95.61(3) 101.98(4)	AgCl ₂ P ₂	P ^T C ^T	247.1(4,11) 247.1(4,11) 265.0(4,7)	(c).8(2) 370.8(3) 88.8(1)	P,P ,C ,C	115.2(1) 117.7(1) 111.4(1,7.7)	204
[Ag ^I {(Ph ₂ PC ₂ H ₄) ₂ S}Br] ₂	1 P1	1204.5(6) 1163.1(3) 1007.3(7) 1216.3(7)	93.24(3) 95.50(3) 102.06(4) 93.77(5)	AgP_2Br_2			(1)7.16			204

Table 8 Continued

Downloaded At: 16:44 23 January 2011

115

SILVER COMPOUNDS

Continued	
Table 8	

Downloaded At: 16:44 23 January 2011

										1
[Ag ^l (PPh ₃) ₂ Br] ₂ ·CHCl ₃	n 12/m 2	1431.1(2) 1762.4(3) 1496.1(3)	96.56(1)	AgP_2Br_2	P µBr	249.6(7,17) 274.2(3,0)	372.0 not given	-	not given	205
[Ag ^l (p-tolylCS ₂)(PPh ₃)] ₂	- PI	1174.4(3) 1086.2(2) 983.1(2)	106.90(2) 96.51(2) 74.54(2)	AgS ₃ P	P S µLS	239.2(2) 265.7(2) 266.2(3,31)	373.8(2) 89.2(1) 90.8(1)	S,µS S,P	67.2(1) 94.3(1) 127.6(1)	206
[Ag ^l (dbp) ₂ Cl] ₂	н Р <u>1</u>	1083.1(3) 1168.3(3) 1174.3(3)	82.73(2) 89.39(2) 78.01(7)	AgCl ₂ P ₂	P µCl	251.5(4,11) 263.9(4,5)	375.0(2) 90.5(1) 89.4(1)	CI,P CI,P	(0.5.1) (05.6(1,3.0) (05.6(1,3.0)	207
[Ag ^I (Ettu) ₂ (SCN)] ₂	2 PI	894.6(1) 576.9(1) 1253.4(5)	109.73(1) 96.51(2) 76.78(1)	AgS4	S NCS µS	247.8(2) 261.8(3) 261.8(2) 310.5(7)	95.4(1) 95.4(1)	S,S S,µS	122.0(1,5) 118.6(2) 77.5- 120.7(2)	208
[Ag ^I (dppp)Cl] ₂	m P2 ₁ /n	1342.8(1) 3326.3(4) 1241 4/1)	99.30(1)	AgCl ₂ P ₂	P µCI	248.9(4,17) 248.9(4,17) 268.1(3,37)	381.2(1) 90.7(1,5) 89.3(1,4)	P,P P,CI	126.5(1,2.1) 109.2(1,17.4)	209
[Ag ^I (PPh ₃) ₂ Cl] ₂	- ЪЦ -	1030.8(5) 1260.8(4) 1389 3(6)	113.36(4) 110.29(3) 75.02(3)	AgCl ₂ P ₂	P PCI	247.0(2,3) 259.6(2) 274.1(2)	384.0(2) 91.97(7) 88.03(6)	P,P P,CI	122.91(7) 109.8(1,6.2)	210
[Ag ^l {(Ph ₂ PC ₂ H ₄) ₂ S)I] ₂	- 1 <u>-</u>	1179.6(2) 1010.8(2) 1733.2(3)	96.45(2) 102.95(3) 94.84(2)	AgP ₂ l ₂	FL P	246.1(2,0) 246.1(2,0) 289.6(1,16)	385.2(2) 83.41(3) 96.59(3)	P,P P,I	119.87(7) 101.6(1,7.7)	211
[Ag ^I {P(OPh) ₃ }2(NO ₃)] ₂	or Fdd2 8	4050.7(15) 2591.7(14)		AgO_2P_2	POT	240.3(5,1) 236.6(8) 264.1(8)	405.5(1) 108.1(3) 71.0(3)	P,P P,O	147.9(1) 102.2(4,16.5)	212
[Ag ^I {P(OMc) ₃ } ₂ (NO ₃)] ₂	or Pbca	914.6(3) 1676.9(4) 2068 9(6)		AgO_2P_2	PU	241.2(3,1) 245.5(8,4)	409.5(2) 113.0(3) 67.0(3)	Р,Р Р,О	133.8(1) 109.1(2,2.7)	213
$[Ag^{I}(C_{10}H_{20}S_{5})]_{2} \cdot \{B(C_{24}H_{20})\}_{2}$	н Р <u>1</u>	1146.2(3) 1189.5(3) 2701.9(10)	78.503(18) 84.729(13) 67.118(18)	AgS4 AgSc	Su Su	256.9(4,40) 253.7(3) 290.7(3) 263.2(5,84)	422.2(1) not given		not given	214
$[Ag^{I}{}_{2}(C_{46}H_{60}N_{8}O_{2})]\cdot(CIO_{4})_{2}$	E 6	1659.5(16)	10/6 43/64	AgN4	N h	248.6(3) 313.1(3) 231.0(26,76)	582.8	N,N	64.3- 1 60 277	191
	4 4	(11)0.0001 2395.1(25)	10):45:01			(2,0C)/.C42			100.2(1)	

116

C.E. HOLLOWAY et al.

SILVER COMPOUNDS

[Ag ¹ ₂ (C ₃₆ H ₄₂ N ₈)] · (CF ₃ SO ₃) ₂	m P2 ₁ /a 4	1336.2(9) 2140.3(2) 1578.0(4)	109.0(1)	AgN4	z	236(2,9)	606	Z,Z	77.1(-,1.7) 114.7(-,4.4)	215
[Ag ¹ ₂ (C4 ₂ H ₅₅ N ₁₀)] [.] (ClO4) ₂ [.] O.5H ₂ O	, ₽ <u>1</u>	1227.7(16) 1389.9(14) 1526.0(50)	77.30(20) 70.17(20) 71.27(9)	AgN4	z	230.2(20,69) 246.6(24,26)	682.4	N,N	64.7- 145.2(9)	191
[Ag ^l (CICH ₂ CH ₂ Cl)·(OTeF ₅)] ₂ (at 153 K)	or Pbca 4	1337.1(5) 819.2(2) 3272.0(9)		AgO ₂ Cl ₂	FO G	272.2(3,193) 233.7(7,29)	101.1(3,1)	CCC	83.4(1,7.8) 100.1(2,7.5) 135.7(2,3.8) 166.3(7-1-5)	216
[Ag ¹ 2(dppm) ₂ (py) ₂ Cl] · (ClO ₄)	or P2 ₁ 2 ₁ 2 ₁ 4	1341(7) 2010(5) 2143(5)		AgP ₂ NCI						217
[Ag ¹ (P ₂ Ph4)(py) ₆](ClO4) ₂	m P2 ₁ /c 2	1403(2) 1037(1) 1927(2)	91.19(9)	AgN ₃ P	Z ፈ	236.8(6,35) 246.3(2)		Χ,Υ Χ,Υ	102.8(3,6.2) 115.2(1,7.4)	218
[Ag ^I (C ₆ H ₁₀ N ₄) ₂ (NO ₃)] ₂	2 P1	953.1(5) 960.5(5) 1112.9(6)	107.43(4) 101.45(4) 108.98(4)	AgN ₃ O	O-NO N N	223.8(10) 221.6(10) 254.1(10) 242.2(10)		N,N N,O	104(1,1) 138(1) 80(1) 110(1)	219
[Ag ^l (PPh ₃)(NCS)] ₂	н 2 Р <u>1</u>	1321.0(4) 1347.0(5) 1034.6(5)	88.14(2) 79.37(2) 113.10(2)	AgP ₂ NS	P SCN NCS	247.9(4,24) 234.6(16) 258.1(6)		d d d X X V S X X S X	$\begin{array}{c} 124.9(2) \\ 105.8(4,6.0) \\ 109.4(2,3.6) \\ 97.1(4) \end{array}$	220
[Ag ¹ ₂ (1 ₂ C ₁₆ H ₁₄ N ₂) ³ . (CF ₃ SO ₃)]CF ₃ SO ₃ . thf	ът Р <u>1</u>	1324.5(5) 1320.7(5) 2049 6(5)	89.35(3) 100.64(3) 108.20(3)	AgN ₃ O	z c	222(3) 236(4) not eiven		Z C	76.6(6,3) 138.8(4,10.9) 103.4(8.9)	66
[Ag ^l (dmpe) ₂] ₂ (BPh ₄) ₂	т Р2 ₁ /п 4	1117.3(3) 2181.9(4) 1656.5(5)	103.85(3)	AgP ₄)	249.6(4,61))	83.5(2) 114.2(2,4.6) 144.4(2)	221
[Ag ¹ ₂ (dppe)(py) ₆](CIO ₄) ₂	PI 1	1053.5(1) 1072.2(3) 1294.8(2)	81.25(2) 81.20(1) 86.45(2)	AgN ₃ P						222
[Ag ¹ ₂ {(CH ₂ S) ₃ } ₅]·(AsF ₆) ₂ ·SO ₂	or Pbca 8	1628.6(3) 2848.7(5) 1811.8(3)		AgS ₄	S	253.7 276.9(4,75)			64.8- 125.2(2)	223
				AgS ₅	S	263.5(3,29) 289.3(3,37)			62.7- 156.2(2)	

Table 8 Continued

Downloaded At: 16:44 23 January 2011

117

Table 8 Continued										
[Ag ¹ ₂ (C ₃₀ H ₄₄ N ₈)](BPh ₄) ₂	m P2 ₁ /n 2	1343.0(11) 2188.2(15) 1165.2(15)	101.2(1)	AgN4	z	241(3,17)			64.9- 145.7(9)	224
[Ag ^l (dppp)(NO ₃)] ₂	고 고 니	1105.5(1) 1283.8(1) 1085.8(2)	111.65(1) 112.20(1) 90.04(1)	AgO_2P_2	РО	262.8(3,47) 241.5(1,11)	ORC	0,0,0	46.9(1) 152.2(1) 107.2(194)	225
$[Ag^{I}(C_{10}H_{18}OS_{4})]_{2} \cdot (CIO_{4})_{2}$	P2 ₁ /n	947.8(1)	94.88(1)	AgS ₃ O	s O	252.8(1,88) 261.2(3)	000	S,O	85.22(5) 70.61(8)	79
[Ag ^I ₂ (C ₂ O ₂ S ₂)(PPh ₃) ₄]	m P2 ₁ /c	1315.9(2) 1315.9(2) 1189.5(2) 2003.9(5)	101.35(2)	AgP ₂ OS	d 0 v	247.3(2,15) 251.0(6) 251.3(2)	ццс	4,0,0	88.9(1) 73.8(1)	226
[Ag ¹ ₂ (LC) ₂ (pic)](pic)	, PT	1310.2(3) 1431.6(4) 1607.0(3)	99.82(2) 97.56(2) 94.73(7)	AgO_2N_2	2		,	r r		227
[Ag ^I (S4N4O ₂)4]AsF ₆	∘ ₽ <mark>⊓</mark> ∘	1142.6(6) 1194.9(5) 1254.8(6)	66.44(4) 96.71(4) 91.30(4)	AgN4	z	255.7(4,49)			87.6(1,3.5) 156.0(1,3.1)	228
[Ag ^I (C ₁₁ H ₈ N ₄ O ₂)(NO ₃)	т С2/с 8	1042.4(5) 1042.4(5) 1656.4(8)	116.87(1)	AgO ₂ N ₂	oz	248.4(6) 229.4(6)			not given	229
	5	(0)0:0-0-1		AgO4N2	0 02NO NO	262.9(6) 257.3(9,47) 282.7(6)				
[Ag ^I {o-(Me) ₂ C ₆ H ₄ } ₂ (ClO ₄)	, PI	859.5(1) 1076.6(1) 1081 7(1)	86.21(1) 103.28(1)	AgO ₂ C ₂	C.P.C	258(3,2) 247(3,3)	419.8(5) C 109(1) C	0,0	71(1) 157.5(9)	230
[Ag ^I (C ₈ H ₈)(NO ₃)	т Ш 4	1090 740 1810	114	AgC ₄	C	232 255				231
^a Where more than one chem and the second is the maxim	ically equi tum devia	ivalent distance tion from the r	or angle is pr nean. ^b The ch	esent, the n emical iden	nean value tity of the	is tabulated. Th coordinated ato	e first number m/ligand is sp	in par ecified	enthesis is the ϵ in these column	.s.d., IS.

Downloaded At: 16:44 23 January 2011

118

C.E. HOLLOWAY et al.

macrocyclic ligand the two bridging nitrogen atoms bring the silver(I) atoms to within 317.7(1) pm.

In this group silver only occurs in the oxidation state of +1. The ligands range from uni-, bi-, penta-, octa- and decadentate. Tables 6 to 9 cover the binuclear silver derivatives and contain examples only of silver in an oxidation state of +1. There are one hundred and seven of these derivatives consisting of 54 four-coordinate (tetrahedral), 22 tri-coordinate, 10 penta-coordinate, 4 hexa-coordinate and 1 hepta-coordinate complexes.

The shortest Ag–Ag distance for each geometry increases with increasing coordination number in the following manner: 265.4(1) pm (bi-) < 272.6(1) (tri-) < 284.5(1) pm (tetra-) < 287.7(6) pm (penta-) < 317.7 pm (hexanuclear). In the equivalent series of binuclear copper(I) compounds [42] no such tren d was found.

4. TRINUCLEAR SILVER COMPOUNDS

Structural information for the trinuclear silver compounds are summarized in Table 10. There are thirteen examples in which only silver(I) atoms are found. Yellow $[Ag(Ph_2PCHPPh_2)]_3^{245}$ consists of silver atoms arranged at the vertices of a nearly regular isosceles triangle (Fig. 1) with the basal Ag(I)-Ag(2) length of 293.3(2) pm

Figure 1
Table 9 Structural data for	binuclear silv	ver compound	ls with coord	lination nur	nber five	and higher ^a				
Compound	Cryst. cl.	a [pm]	α [°]	Chromo-		T-W	[md] M-M		L-M-L	Ref.
	Space 81.	c [pm]	ا ۲ ۲	pilure		[md]	м-т-ти [] µL-М-µL [°]		[。]	
[Ag ^I (µ-glyH)(NO ₃)] ₂	m P2 ₁ /a 4	545.1(4) 1949.3(10) 554.1(8)		AgO ₅	0^b_{02NO}	228(2,9) 286(2,1)	287.7(6) 163.1(7)			232
$[Ag^{I}_{2}(C_{38}H_{46}N_{10})] \cdot (CIO_{4})_{2}$	tg 14 ₁ cd 16	2811(4) 2161 8(16)		AgN ₅	N N	237.8(24,20) 252.0(28) 259.7(21)	306.8(6) 72.0(6)	ν,N ^b	66.7- 153.2(8)	191
	5			AgN ₆		243.2(25,48) 260.2(25,20) 262.0(28)		Z,Z	65. 4 155.9(7)	
$[Ag^{l}(C_{21}H_{21}N_{7}O_{2})]_{2}\cdot(BF_{4})_{2}$	m P2 ₁ /n 4	1829,5(3) 976.3(2) 2564 3(5)	105.03(1)	AgN ₅		231.7(8,1) 245.7(8,2) 737.0(0)	347.2(1)	N,N	66.5(3,2.3) 125.0(3,3.0)	233
				AgN ₆		237.5(8,18) 237.5(8,18) 250.4(8,12) 258.5(8)		N,N	65.2(3,3.2) 119.7(3,18.6)	
[Ag ^I (C ₁₂ H ₁₈ S ₅)] ₂ (ClO4) ₂	m P2 ₁ /n 2	1088.66(2) 944.19(4) 1496.08(2)	97.132(1)	AgS ₅	ks hS	256.6(2,2) 275.0(3) 260.0(5)	408.2(3) 93.45(5) 86.55(5)	S,S	79.9(1,3.5) 114.9(1,15.5) 162.94(5)	234
[Ag ^l (2-SO ₃ py)]2	m P2 ₁ /c 4	1057.8(1) 532.9(3) 1263.8(2)	113.44(1)	AgO4	zoq	228.2(4) 228.2(4) 233.9(3) 263.5(4)	not given not given 81.0(1)	0,0 0,N µ0,N	85.3(1) 103.7(1,14.9) 71.0(1) 148.4(1)	235
[Ag ^l (bzttcp)] ₂ · {2,4,6-(NO ₂) ₃ C ₆ H ₃ O} ₂	2 PI	1094.7(2) 1306.7(3) 910.7(1)	96.79(1) 101.54(1) 96.32(1)	AgS ₅					IJ	236
[Ag ^I (C ₁₅ H ₂₃ NO ₃ S ₂)] ₂ .(PF ₆) ₂	– m 4	2367.8(3) 1872.1(4) 969.0(3)	96.31(1)	AgO ₃ NS	οzυ	248.7(7,117) 236.8(6) 250.1(2)	•	0,0	66.6(2,1.0) 123.6(3)	237
		(6)0:222		AgS ₃ ON	20vc	258.9(3,44) 258.3(7) 252.8(8)		S,S	108.1(1,7.5) 141.82(9) d2	

Downloaded At: 16:44 23 January 2011

120

Table 9 Continued		i								
[Ag ^l (AsPh ₃) ₂ (NO ₃)] ₂	tr P1	1197(1) 1202(1) 1368(1)	102.0(1) 113.3(1) 104.0(1)	AgO ₃ As ₂	As Ou Du	252.8(4,7) 268.4(7) 240.9(6) 273.7(6)	not given not given 68.7(2)	As,As As,O	134.2(1) 99.2(3.2.6) e	16
[Ag ^l (PPh ₃)(C ₂ B ₉ H ₁₁)] ₂ ·Me ₂ CO (at 173 K)	н Р <u>Т</u>	1054.6(1) 1108.3(1) 1265.6(1)	122.20(1) 108.33(1) 107.10(1)	AgB ₃ PH	в ЧН	243.1(5,91) 241.8(1) 219(5)		H	tot given	238
[Ag ^I {C ₅ (CO ₂ Me) ₅ } · (PPh ₃)] ₂	2 PI	1459.5(6) 1104.3(4) 1108.4(5)	101.91(3) 101.79(3) 105.56(3)	AgO ₂ C ₂ P	loua	251.4(3,99) 255.2(4,80) 239.7(1)		0,0 0,0	70.9(1) 32.1(1) f	58
[Ag ^l (LN ₅)] ₂ (CIO ₄) ₂	- 12/c 4	1215.4(8) 2065.0(9) 1646.1(8)	110.11(8)	AgN ₆	Ezz	244.5(10,81) 256.8(10) 274.8(10)	317.7(1) not given	G	ot given	239
[Ag ^t (C ₃₄ H ₅₃ O ₈)]2	or C222 ₁ 8	2243.9(5) 1697.6(3) 1861.9(4)		AgO ₆	0	231.0(10) 256.1(11,97) 282.7(12)	319.7(2)		64.7- 154.7(4)	240
[Ag ¹ ₂ (dmpte) ₃] · (ClO4) ₂ EtOH	т С2/с 4			AgO ₄ S ₂						241
[Ag ^l (PhMe) ₂ (OTeF ₅)] ₂	m P2 ₁ /c 2	936.3(2) 1810.9(4) 1051.4(2)	112.89(2)	AgC4O2	ပပ	246.4(5,21) 266.1(5,36) 238.2(3.14)	101.4(1)	C,C	30.9(2,1) 109.4(2,18.7) g	242
[Ag ^I (C ₃₄ H ₅₃ O ₈)] ₂ ·Me ₂ CO	т Р2 ₁	1225(3) 1681(3) 1182(4)	97.39(1)	AgO ₅ C ₂	00	270 257(2,22)			D	243
^a Where more than one chemical and the second is the maximum	y equivale deviation	in from the m	r angle is pre nean. ^{b} The cl	ssent, the me nemical iden	an valu tity of	e is tabulated.] the coordinated	The first numl atom/ligand	ber in po is specif	fied in these colu	e.s.d., umns.

and the second is the maximum deviation from the mean." The chemical identity of the coordinated atom/ugand is specified in the second is the maximum deviation from the mean." The chemical identity of the coordinated atom/ugand is specified in the second in the second is the maximum deviation from the mean." The chemical identity of the coordinated atom/ugand is specified in the second is 97.1(1,4.7) and $137.4(1,1.8)^{\circ}$. ^d/O-Ag-N = 83.4(3), 104.3(2) and $129.6(2)^{\circ}$; O-Ag-S = 77.4(2), 124.9(2) and $158.5(2)^{\circ}$; N-Ag-S = $81.3(2)^{\circ}$. ^d/S-Ag-O = 69.2(2), 89.7(2) and $142.8(2)^{\circ}$; S-Ag-N = 75.1(2,4) and $123.3(2)^{\circ}$; O-Ag-N = $94.0(2)^{\circ}$. ^eO-Ag-D = 49.5(2) and $117.9(2)^{\circ}$; As-Ag-U = 103.8(3,9) and $117.9(3)^{\circ}$; 5° -Ag-D = 103.8(3,9) and $117.9(3)^{\circ}$; 5° -Ag-D = 102.8(1,13.0) and $132.5(2,4.7)^{\circ}$; O-Ag-O = $78.6(1)^{\circ}$.

SILVER COMPOUNDS

and sides of length 341.4(1) pm (Ag1-Ag3) and 345.6(1) pm (Ag2-Ag3). Coordination about the basal silver atoms, which are bridged by three $Ph_2PCHPPh$ ligands through phosphorus atoms, is trigonal. The methylene carbon atoms of two ligands are bridged by the Ag3 atom with Ag-C distances of 220(1,1) pm and C-Ag-C angle of 149.8(4)°. The Ag-P distances of a bidentate ligand at 247.6(3,9) pm are significantly shorter than those involving the tridentate phosphines (253.6(3,40) pm).

The structure of colourless $[Ag_3(dpph)_2(MeCN)_2](ClO_4)_3(Et_2O)_2^{246}$ consists of non-equivalent silver atoms bridged by a pair of tridentate *trans*bis(diphenylphosphinophenylphosphine) molecules, with the Ag-Ag-Ag angle of 175.33(7)°. The derivative $[Ag\{(PhMe_2Si)_3CHS\}]_3^{247}$ consists of a discrete sixmembered ring of alternating silver and sulphur atoms, Ag_3S_3 . Each silver atom exhibits a coordination number of two, with distorted digonal geometry (Table 10). In the $[Ag_3(dppm)_3X_2]^+$ cation (X = Br^{248} or $Cl^{249,250}$) a triangular array of silver atoms is bridged by triple X atoms and by the dppm ligands in a syn-syn arrangement. All three silver atoms are tetra-coordinate in a distorted tetrahedral arrangement of two halogen and two phosphorus atoms.

In a white derivative²⁵¹ three silver centres are bridged by three 3,5diphenylpyrazolate units to form a nine-membered ring of Ag_3N_6 . The three silver atoms are in a digonal arrangement with Ag–N distances of 209(1,1) pm and N-Ag-N angles of 175.5(5,8)°. The Ag–Ag distances range from 330.5(2) to 349.6(2) pm. Two of the three silver atoms in another derivative²⁵² are coordinated to two 2-aminopyridine ligands *via* the heterocyclic N atom and the O atoms of NO₃ groups. The remaining and central silver atom lies on a crystallographic two-fold axis, which rotates one half of the molecule into the other. The 2-aminopyridine ligands are bridging, bidentate through the ring N atom and the exocyclic amino groups (Table 10).

A trinuclear double helix 980 pm wide and 2000 pm long is found in another example.²⁵³ All three silver atoms are tetrahedrally coordinated by the N atoms of the two macrocyclic ligands. Another example²⁵⁴ has two *pseudo*-tetrahedral silver atoms and one *pseudo*-octahedral silver all sitting within the cavity of a tetradec-adentate macrocyclic ligand.

Colourless $[Ag_4(C_6H_{12}S_3)_5](ClO_4)_4^{140}$ consists of two different cations, one monomeric $[Ag(C_6H_{12}S_3)_2]^+$ with a *pseudo*-octahedral environment and the other trimeric $[Ag(C_6H_{12}S_3)]_3^+$. All three silver atoms in the latter are coordinated to a highly distorted tetrahedral array of four S atoms, one S atom of each nine-membered macrocycle being bound to two Ag centres. The Ag_3S_3 six-membered ring is planar.

An extremely hygroscopic, colourless and crystalline derivative²⁵⁵ has two crystallographically equivalent silver(I) atoms coordinated by alternate O atoms of the twelve-membered (CH₂O)₆ ring. The *pseudo*-octahedral coordination about the third silver atom is by six fluorine atoms of different AsF_6^- anions.

There are uni-, bi-, tri-, tetra- and tetradecadentate ligands. In the series of unidentate ligands, the mean Ag-L distance increases with the covalent radius of the coordinated atom, for example: 245.8 pm (L = O, 73 pm) < 248.9 pm (N, 75 pm). However, in the bidentate series the distances are 220 pm (N) < 244.3 pm (P, 106 pm) < 262.2 pm (F, 72 pm) < 267 pm (O). In the multidentate N-donor ligands the mean Ag-N distance increases in the sequence: 220 pm (bi-) < 234 pm (tetra-) < 239.6 pm (tetradeca-) < 248.9 pm (unidentate). The Ag-X (bridging) distances,

		4								
Compound	Cryst. cl. Snace ar	a [pm] h [nm]	α [°] Β [°]	Chromo- nhore		M-L	M-M		L-M-L	Ref.
	Z	c [bm]	ر "] ۲ ۲ [°]	piroit		[md]	[md]		[。]	
[Ag ^I (Ph ₂ PCHPPh ₂)] ₃ . 2 toluene	m P2 ₁ /n 4	1400.4(2) 2363.2(4) 2457.2(4)	101.66(1)	AgC ₂	\mathbf{C}^{p}	220(1,1)	293.3(2) 341.4(2) 345.6(2)	C, C^b	149.8(4)	245
				AgP ₃ (2x)	Ч	247.6(3,9) 253.6(3,40)		P,P	120.0(1,14.0)	
[Ag ^f ₃ (dpph) ₂ (MeCN) ₂ . (ClO ₄)](ClO ₄) ₂ (Et ₂ O) ₂	or Pbcm	1063.9(6) 2725.6(6)		ÁgŶ2	Ч	239.7(3,0)	294.3(2) 301.4(2)	P,P	169.3(1)	246
	4	2838.0(4)		AgP_2N	ط Z	240.2(3,0) 255.2(16)		d, d N d	161.24(12) not given	
				AgP ₂ ON	- O Z	244.7(3,0) 276.2(13) 277 5(16)		4 0 V	137.91(12) 98.97(14) 86.445)	
[Ag ^I {(PhMe ₂ Si) ₃ CHS}] ₃ . 0.5C ₆ H ₆	ь Р]	1123.6(2) 1644.5(3) 2568 6(4)	92.79(1) 97.52(1) 108.77(1)	AgS ₂	Sul	248.1(2,63)	301.5(1) 303.5(1) 323.7(1)	S,S	155.5(1,7.6) ^c	247
[Ag ¹ 3(dppm) ₃ Br ₂]Br	er Pna2 ₁ 4	2146.8(1) 1909.8(1) 2146.8(2)		AgP_2Br_2	Ρ μ ₃ Βr	244.1(8,28) 279.7(4) 284.0(4.18)		P,P Br,Br	125.0(3,1) 95.5 $(1,1)^d$	248
[Ag ^I ₃ (dppm) ₃ Cl ₂]. [Sn(Ph) ₂ (NO ₃) ₂ Cl]MeOH	m P2 ₁ /a	3982.2(16) 1060.3(2)	91.27(5)	AgCl ₂ P ₂	Ρ μ ₃ CI	245.5(4,19) 268.9(4,20) 202 6(4,12)	319.8(2) 329.6(3)	P,P P,CI	126.9(2,7.8) $108.4(2,11.5)^{e}$	249
[Ag ¹ 3(dppm) ₃ Cl ₂]ClO ₄	4 т Р2 ₁ /п	2025.4(14) 1155(9) 2752(4) 2796(4)	102.8(1)	AgCl ₂ P ₂		202.0(4,112)	(2)0.400			250
$[Ag^{I}(3,5-Ph_{2}pz)]_{3}(thf)_{2}$	m P2 ₁ /n 4	1406.6(6) 1498.7(3) 2330.6(6)	106.88(3)	AgN_2	Z	209(1,1)	330.5(2) 336.2(2) 349.6(2)	N,N	175.5(5,8)	251
Ag ¹ 3(2-NH2py)4(NO3)3	or Pccn 4	799.2(4) 1678.8(5) 2103.4(8)		AgN4	μN	239(1,2)	(*)0.010	N,N	82.5- 130.0(4)	252
	+			AgO ₃ N ₂ (2x)	Aoc	218(1,2) 255(1) 279(1-1)		0'0 N	77.7(3) 120.9(3) 154.0(4)	
)	11,11,12		N,O	98.2(2,14.6)	

Table 10 Structural data for trinuclear silver compounds^a

Downloaded At: 16:44 23 January 2011

$[Ag^{1}_{3}(C_{36}H_{32}N_{6}O_{2})_{2}] \cdot (CF_{3}SO_{3})_{3}$	tr PT	1712.5(6) 1765.4(6) 1352.2(4)	102.39(2) 98.59(2) 91.59(2)	AgN4	z	226-242(1)		N,N	71.5(4,1.2) 114.8- 138.7(4)	253
$[Ag^{1}_{3}(C_{48}H_{48}N_{14})](BF_{4})_{3}$	ч Р <u>1</u>	1358.0(1) 1433.3(3) 1576.7(7)	106.95(1) 99.98(1) 82.99(1)	AgN4 (2x)	Z	233.1(8,115)	490 493	N'N	77.2(3,1.0) 115.0(3,4.5)	254
	1			AgN ₆	z	248.4(6,40)		N,N	66.4(3,1.0) 100.0(3,7.9) 151.8(3.3.9)	
[Ag ^I (C ₆ H ₁₂ S ₃)] ₃ . [Ag ^I (C ₆ H ₁₂ S ₃) ₃ .KClO ₄) ₄	hx P6,	1591(2) -		AgS4 (3x)	s nS	260.4(4,9) 272.4(2,0)		S,S µS,µS	84.9(1) 114.0(1) ^f	140
	5	1345.9(2)		AeSc		see Table 5		.	~	
[Ag ¹ ₃ (CH ₂ O) ₆ (AsF ₆) ₃	c la3 24	1637.6(2)		AgF6	, Ľц	265.5(6,0)			not given	255
	- i			AgO ₃ F ₃ (2x)	Оц	245.8(5,0) 258.9(5,0)				
[Ag ¹ ₃ {PrS(CH ₂) ₂ SPr} ₂]. (NO ₃) ₃	tr P <u>1</u> 2	894.5(1) 1235.5(2) 1357.2(5)	98.69(2) 92.74(2) 90.45(1)	ÀBŚs						256
^a Where more than one chan and the second is the ma and the second is $78.3(1,5.3)^{\circ}$ cAg-S = Ag = $78.3(1,5.3)^{\circ}$ = $108.4(2,11.5)^{\circ}$. Ag-S-A	emically eq iximum dev and Ag-Ag g = 126.0(uivalent distanc iation from the -Ag = 60.0(1,4. 1)°; μS-Ag-S =	ce or angle is p e mean. ^b The (.7)°. ^d Ag-Br-Ag 81.3(1,5) and	resent, the n chemical ide z = 70.81(1, 136.2(1, 2.4)	ntity of 2.7)°; P °.	lue is tabulated. the coordinated -Ag-Br = 108.0(The first num atom/ligand 2,10.6)°. ^e Ag-	ber if par is specifi Cl-Ag =	enthesis is the e ed in these colu 88.8(1,1.7)°; P-,	e.s.d., imns. Ag-CI

where X is triply-bridging, increases with the covalent radius of the coordinated atom: 273.4 pm (Cl, 99 pm) < 283.5 pm (Br, 114 pm).

5. TETRANUCLEAR SILVER COMPOUNDS

5.1. Coordination number two

Structural data for these silver compounds are summarized in Table 11. The structure all contain silver(I) in discrete eight-membered rings (Ag_4X_4) with alternating silver and X atoms. The µL-Ag-µL angles range from 165° to 180°. The mean Ag-L(bridge) distance increases with the covalent radius of the X atom in the sequence: 212.7 pm (N, 75 pm) < 220 pm (C, 77 pm) < 238.1 pm (S, 102 pm). The shortest Ag-Ag distance is 273.3(3) pm.²⁵ There is an interdependence between the mean Ag-Ag distance and the Ag-L-Ag angle. As the distance increases the angle opens (Table 11). The shortest Ag(I)-Ag(I) distance of 273 pm is about 31 pm longer than that of Cu(I)-Cu(I), but shorter by about 19 pm than the corresponding Au(I)-Au(I) distance.⁴³

5.2. Coordination number three

The structural data for these compounds are listed in Table 12. There are ten examples, seven of which contain two silver(I) atoms of higher coordination number, and these are cross-listed with the appropriate table.

The structure of $[Ag_2(4-FC_6H_4OCH_2CO_2)_2(H_2O)_2]_2^{261a}$ shows a discrete centrosymmetric tetramer with one water molecule on each of the four silver(I) atoms. Carboxylate groups bridge a pair of silver atoms in a syn-syn arrangement, and two of these dimeric units are held together by two bridged oxygen atoms from different

Compound	Cryst. cl. Space gr. Z	a [pm] b [pm] c [pm]	α[°] β[°] γ[°]	Chromo- phore		M-L [pm]	M-M [pm] M-L-M [°] μL-M-μL [°]	Ref.
[Ag ^I (mes)] ₄	rh R $\overline{3}$	1839.5(3)	116.28(2)	AgC ₂	μC ^b	220(3,4)	274.4(3,11) 77.1(7,1.0) 167.1(8.1.9)	245, 257
$[Ag^{I}(FC_{6}H_{4}N_{3}C_{6}H_{4}F)]_{4}$	m C2/c 4	1863.0(3) 1270.2(1) 2005.1(2)	103.07(1)	AgN_2	μN	212.8(4,26)	282.0(1,14) not given $177.7(2.2.3)$	258
[Ag ^I (mpsa)] ₄	m C2/c 4	2867(1) 1149.3(3) 2056.5(8)	126.25(2)	AgN_2	μN	212.6(4,43)	307.7(1,87) not given 169.7(2.1.5)	259
[Ag ^I {(Bu ^t O) ₃ SiS}] ₄	tr PT 2	1769.7(25) 2012.8(17) 1266.8(6)	119.63(6) 82.22(7) 95.08(9)	AgS ₂	μS	238.3(3,6)	313.5(7,18) 82.3(3,5) 172.3(3)	260
[Ag ^I {(Me ₃ Si) ₃ CS}] ₄	or Pbca 8	1747.8(3) 2831.4(4) 2970.6(4)		AgS ₂	μS	237.8(8,18)	331.3(3,18) 88.3(3,1.0) 177.5(3,7)	247

Table 11 Structural data for tetranuclear silver compounds, coordination number two^a

^a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^b The chemically identity of the coordinated atom/ligand.

Table 12 Structural data for	or tetranucle	ar silver comp	ounds, coorc	lination nur	nber thi	.ee ^a				
Compound	Cryst. cl.	a [pm]	α [°] β [°]	Chromo-		M-L	M-M [pm] M I M fol		L-M-L	Ref.
	Z Z	c [bm]	۲ [°] ۲	plute		[md]	MI-T-IM		[。]	
[Ag ₂ (4-FC ₆ H ₄ OCH ₂ CO ₂) ₂ . (H ₂ O) ₂] ₂	т Р <u>1</u>	804.52(6) 1074.9(1) 1184.8(1)	66.45(1) 81.201(6) 77.826(7)	AgO ₃	${\rm O}^b_{{ m H}_2{ m O}}$	216.5(3,7) 249.9(4)	283.6(2)		94.1(1,5.8) 171.8(1)	261 <i>a</i>
				AgO4		229.6(3) 227.1(3) 249.8(4)			78.5(2) 87.1(2,4.6) 116.4(2,2.2)	
[Ag ¹ {PhN ₃ C ₆ H ₄ N ₃ (H)Ph}] ₄	or Pbcn 4	1989.7(8) 1917.5(3) 1767.1(4)		AgN_3	N	219(1,2) 219(1,2) 236(1,0)	291.1(2,192)		72.5(5,4) 115.8(5,4.3) 115.8(5,4.3)	261 <i>b</i>
(PPh ₄) ₂ [Ag ^I ₄ (SCH ₂ C ₆ H ₄ · CH ₂ S) ₃]·6MeOH (at 150 K)	tr P <u>1</u>	1395.9(3) 1427.2(3) 22286.8(5)	76.10(2) 87.68(2) 60.96(2)	AgS ₃	Sıı	250.5(1,83)	304.4(1,46) 74.8(1,1.6)		119.8(1,13.0)	262
(NEt)4[Ag ¹ (Se ₄)] ₄	- m 7 1/n	1622.9(3) 1148.0(5) 1717 1(3)	106.06(1)	AgSe ₃ (2x)	Se µSe	259.6(1) 260.0(1,17)	304.8(1,131) 73.5(1,10.9)		119.7(1,14.8)	263
	1			AgSe ₄	μSe	266.4(1,44) 290.1(1)			104.0(1,13.4)	
(NPr4)[Ag ¹ 4(S4)3] (at 148K)	m P2 ₁ /n 4	1049.3(2) 2457.3(3) 1749.9(1)	93.84(1)	AgSe3	μSe	260.4(1,106)	305.0(1,143) 72.3(1,1.8)		111.1(1,11.4) 137.6(1,9.0)	263
$[Ag^{I}_{4}(dppm)_{4}(NO_{3})_{2}]$. (PF ₆) ₂	+ 1d -	1370.3(3) 1451.6(2) 1340.2(2)	112.21(1) 96.82(2) 83 56(1)	AgP_2O	P P	242.8(3,38) 251.0(8,32)	309.9(1)	P,R ^b P,O	146.8(1,5.3) 101.9(2,6.9)	198
[Ag ^I (PPh ₃)(MeCO ₂)]4	m P2 ₁ /c	1361.6(11) 1243.6(12) 2348 9(17)	91.28(11)	AgO ₂ P (2x)	Ч О	237.6(3) 225.1(9,10)	312.2(1) 101.1(3)	0,0 1,0	97.9(3) 128.7(2,1)	264
	4	(11)/101/7		AgO ₃ P (2x)	d 0	235.4(3) 222.6(12)		0,0	78.9(2) 97.7(4,2.2)	
					Ę	239.8(7.78)		0.P	122.1(2.12.7)	

Downloaded At: 16:44 23 January 2011

126

Table 12 Continued					i					
(PPh ₄) ₄ [Ag ^I ₄ l ₈]	tr PT	1345.3(7) 1660.7(9)	102.83(4) 103.94(4)	Agl ₃ (2x)	- 13	272.7(2) 276.4(2.1)	321.4(2,43) 68.02(5.1.48)	1,1	119.96(5,5.6)	179
	1	1106.8(7)	82.96(4)		Ļ					
			~	Agl ₄	ЦЦ	284.4(2,2)		1,1	109.45(5,3.81)	
				(2x)		294.6(2,45)				
$(ASPh_4)_4[Ag^I_4]_8]$	μ	1344.6(3)	103.36(2)	Agl3	I	272.1(1)	325.2(2,54)	1,1	119.99(4,6.44)	179
	Р <u>Т</u>	1671.2(3)	103.84(2)	(2x)	ц	276.2(1,5)	69.15(3,1.85)			
	1	1129.3(4)	83.43(2)		-			1,1	109.45(4,4.01)	
				Agl_4	ш	284.7(1,1)				
				(2x)		293.5(1,38)				
[K(crypt)]4[Ag ^I Br _e]	E	1655.7(2)		AgBr ₃	Br	251.8(2)	357.9(1,17)		not given	31
	$P2_{1/c}$	2386.4(2)	107.45(1)	(2x)	μВг	264.1(2,10)	86.5		ł	
		2	1407.0(2)	$AgBr_4$	μBr	274.2(2,57)				
				(2x)						
"Where more than one che	smically equi	valent distance	or angle is p	present, the	mean va	lue is tabulated	l. The first numb	er in j	parenthesis is the	e.s.d.,
and the second is the max	imum devia	tion from the r	nean. 'The cl	hemical ide	ntity of	the coordinated	atom/ligand is	specifi	ed in these colum	ns.

/ 2011
January
23
16:44
At:
nloaded
MOC

dimers. This results in triangular coordination about two silver atoms and tetrahedral coordination about the other two. The brown compound $[Ag{PhN_3C_6H_4N_3(H)Ph}]_4^{261}$ is built up of a rhombus of four silver(I) atoms and four bis-triarsenido units. In another three examples^{262,263} the metal rhombus is held together by sulphur²⁶² or selenium ligands.²⁶³ In a colourless derivative¹⁹⁸ two $[Ag_2(dppm)_2]^{+2}$ subunits are held together by two bridging NO₃ groups. In another example²⁶⁴ non-equivalent silver(I) atoms are linked together by acetate groups. Tetranuclear $[Ag_4X_8]^{-4}$ anion (X = Br³¹ or I¹⁷⁹) is centrosymmetric and was described in terms of two edge-sharing silver(I) bromide or iodide tetrahedra, each linked by a common edge of an approximately planar silver halide triangle (Table 12).

In general, the mean Ag-L(terminal) are shorter than Ag-L(bridge) distances. For tri-coordinated silver(I) atoms, the mean Ag-L distance increases with the covalent radius of the coordinated atom. For example the bidentate ligands give the order: 220.8 pm (O) < 242.8 pm (P) < 259.6 pm (Se, 116 pm). For the bidentate bridged ligands the order is 251 pm (O) < 260.2 pm (Se). For unidentate terminal and bridging ligands the order is: 251.8 and 264.1 pm (Br) < 272.4 and 276.3 pm (I), respectively. the shortest Ag-Ag distance found in this series of tetranuclear derivatives, 279.9(1) pm, is about 6.6 pm longer than that found in the previous examples with coordination number two (Table 11).

5.3. Coordination number four

The structural data for these derivatives are given in Table 13. There are several distinct types of structures, the distorted "cubane-like" geometry being the most common. From nineteen examples given in Table 13, thirteen belong to the cubane type (Table 13A). The cubane-like structure, for example in a colourless derivative,²⁷¹ is composed of four silver and four iodine atoms situated at alternative corners of a highly distorted cube with each silver atom being closer to one of the PPh₃ ligands. In this series (Table 13A) the Ag-Ag distances range from 299 to 420 pm, the mean value being given in the table. The variation of Ag-Ag distances range from 3 pm to 70 pm, which occurs because of a nonsystematic distortion from idealized T_d symmetry.²⁷¹ It is evident from the data in Table 13A that there are links between the Ag-Ag distances and the Ag-L-Ag angles. The mean distances increases with an opening of the angle. The mean Ag-L(bridge) distance increases with covalent radius of the triply-bridged atom in the sequence: 266.8 pm (Cl) < 280.6 pm (Br) < 291.0 pm (I). In the corresponding series of Cu(I) cubane-type structures,⁴² the mean Cu-L(bridge) distance increases in the same order, viz: 238.3 pm (Cl) < 255.0 pm (Br) < 271.1 pm (I). All are shorter than those found in silver cubane type structures. It is seen that the value of {[Ag-L(bridge)]-[Cu-L(bridge)]} distances decreases with increasing covalent radius of the bridged atom in the sequence: 28.5 pm (Cl) < 25.6 pm (Br) < 19.9 pm (I), suggesting the limiting effect of ligand steric hindrance.

The mean Ag-L(terminal) distance increases in the sequence: 230 pm (pip) < 237 pm (NEt₃) < 240.2 pm (Me₄pip) < 241.3 pm (PEt₃) < 242.0 pm (PPh₃) < 250.2 pm (ppyp), due to both the steric and electronic nature of the ligands. From these correlations it can be seen that the degree of distortion mentioned above follows the degree of steric hindrance. It is interesting to note that while monoclinic [Ag(PPh₃)I]₄²⁷¹ has a cubane-like structure, the colourless triclinic

Table 13 Structus	ral data for 1	tetranuclear sil	ver compound	s, coordinati	on numb	er four ^a				
Compound	Cryst. cl. Space gr. Z	a [pm] b [pm] c [pm]	α[°] β[°]	Chromo- phore		M-L [pm]	М-М М-L-М [°] µL-М-µL [°]		L-M-L [°]	Ref.
A: Cubane-like str [Ag ¹ (pip)Br] ₄	ucture or Pcna	1986(1) 798.5(4)		AgBr ₃ N	N ^b μ3Br	227.0(7) 269.8(2)	301.9(2,87) 65.5(1,9)	Br,N ^b	99.4(2,8) 127.1(2)	266
[Ag ^l (pip)l]4	o or Pcna	1015./(0) 2022.0(40) 822.6(20)		Agl ₃ N	N M3l	285.3(2,7) 232.9(15) 285.3(2)	109.8(1,1.6) 303.2(2,63) 62.8(5,8)	l,N	99.4(4,1) 122.6(4)	265
[Ag ^t (pip)l]4	o or Pcna	2024.0(50) 2024.3(6) 826.0(3)		Agl ₃ N	N H ₃ l	229.1(12) 229.1(12) 285.3(2)	111.3(7,1.0) 303.9(2,66) 62.8(1,8) 111.4(1,1.5)	l,N	99.0(2,1) 123.3(3)	266
[Ag ^l (tht)] ₄	, 면터 c	967.3(3) 1068.4(3) 1657.4(8)	91.73(3) 104.07(3)	Agl ₃ S	S µ ₃ l	254.6(7,18) 289.5(3,66)	310.8(3,147) 64.9(1,3.7)	I,S	108.7(1,14.4)	267
[Ag ^l (NEt ₃)l]4	tg P4 ₂ /nmc	1320.2(6) 1320.2(6) -	(6)70.011	Agl ₃ N	н ₃ 1	237(3) 290.7(4,10)	320.2(5,42) 66.8(1,9)	l'N	109.5(6,9)	268
[Ag ^I (PEt ₃)]]4	tg P4 ₂ /nmc 2	1373.6(1) 		Agl ₃ P	Ρ μ ₃ Ι	243.8(2) 291.9(1)	320.8(1,1) 66.7(1,5)	l,P	110.3(1)	269
[Ag ^I (Me4pip)]]4	tg I4 ₁ /amd	1802.4(8) 		Agl ₃ N	N H3l	240.2(12) 286.7(2,0) 202.0(3)	341.7(2,55) 71.7(1,2.8)	I,N	91.2(3) 123.9(1)	266
[Ag ^l (PEt ₃)Br]4	с I43m 2	1316.5(2)		AgBr ₃ P	Ρ μ ₃ Br	240.2(5) 240.2(5) 242.2(7) 280 7(5)	$326.7(1,172)^c$ 78.5(1,5.3)	Br,P	110.3(2) 129.2(3)	270
[Ag ^I (PPh ₃)l]4	د m P2 ₁ /c	2499.1(5) 1240.2(3) 2507 4(6)	113.30(7)	Agl ₃ P	P µ ₃ l	245.8(4,4) 245.8(4,4) 285.9(2,23)	73.6(1,9.0) 73.6(1,9.0)	l,P	112.2(1) 134.9(1)	271
[Ag ^I (PEt ₃)Cl] ₄	c 143m 2	1291.9(2)		AgCl ₃ P	P µ3CI	238.9(2) 238.9(2) 230.0(1)	354.1(2,398) 83.7(1,6.5) 85.8(1,6.5)	CI,P	112.2(5) 134.9(8)	270
[Ag ^l (PPh ₃)Cl] ₄	د or Pbcn 4	1792.5(4) 2077.8(15) 1827.9(3)		AgCl ₃ P	P µ3Cl	237.9(1,77) 237.9(3,7) 260.9(1,77) 274.2(1,18)	363.3(2,225) 86.5(9,7.2) 92.7(9,8.5)	CI,P	122.3(1,16.4)	271, 272

Table 13 Continued										
[Ag ^I (PPh ₃)Br]4	rh R3c	1749.4(5)	56.01(2)	AgBr ₃ P	Ρ μ ₃ Br	242.2(4,7) 274.5(1,68) 296.2(1)	395.3(2,247) not given		not given	205
[Ag ^I (ppyp)CI] ₄	с С2/ <i>с</i> 8	2365.0(8) 2354.1(9) 2348.6(9)	90.88(3)	AgCl ₃ P	Ρ μ ₃ Cl	250.2(5,98) 265.0(5,112) 291.4(5,1)	not given 88.9(1,5.2) 91.1(1,4.3)	CI,P	115.7(1,9.1) 135.6(1,3.4)	273
B: Different types [Ag ¹ 4(C ₃ H4NS ₂)4(PPh ₃)2	ш С2/ <i>с</i> 4	1465.61(6) 1223.1(6) 2961.3(7)	97.71(3)	AgS ₂ NP AgS ₂ N	Z L SIZ	228.7(9) 252.3(3) 267.6(3,52) 227.1(9)	309.4(1,16) ^d		not given	274
[Ag ¹ 4(PPh ₃)4 [.] {C ₁₀ H ₆ (CO ₂)} ₂]2C ₆ H ₆	tr P T	1180.4(4) 1839.0(4) 2204.6(1)	103.23(7) 95.81(3) 90.08(7)	AgO ₃ P (3x)	2409 9	236.1(4,19) 236.1(4,19) 227.8(9) 244.0(9,191)	$380.9(2,152)^{e}$ 101.0(3,7.1)	0,0 0,P	51.7- 116.9(3) 120.6(2,8.7) 144.0(7.2)	275
				AgO4P	a Or	234.6(5) 247.7(9,151)		0,0 0,P	50.8- 118.1(3) 118.6(3,7) 128.0(2.2.9)	
[Ag ¹ 4(dppm) ₂ Br ₄	m P2 ₁ /c 4	1136.0(7) 1603.3(12) 1689.1(12)	122.36(4)	AgBr ₃ P	P µBr u,Br	238.6(5,6) 258.4(5,5) 283.3(4,139)	302.3(3,59) 65.2(1,7.8) 91.7(1,8.0)	Br,P	107.4(1.5.7) 130.2(2,4.2)	248, 276
[Ag(PPh ₃)l] ₄ ·1.5CH ₂ Cl ₂	PT	1210.2(3) 1507.1(2) 1194.8(2)	110.59(1) 96.40(2) 71.64(2)	Agl ₃ P	н 131 н	244.2(3,13) 278.7(1,63) 282.0(1,14) 290 5(1)	68.0(1,3.4) ^g 110.1(1,5.3)	I,P	111.7(1) 115.6(1,11.8)	270, 271
[Ag ¹ 4(py) ₆ ·{1,2-C ₆ H ₄ (CO ₂) ₂ }2	PT 1	1205.0(2) 1070.1(2) 919.9(2)	84.02(2) 75.02(2) 73.50(2)	AgO ₃ N (2x) AgO ₂ N ₂ (2x)	Pozezz	222.04() 226.1(4) 225.3(4,96) 226.3(5,36) 232.5(5) 275.8(4)	362.5(1) 95.7(1) 142.7(1)	0,0 0,0 0,0 0,0	88.6(1,9.8) 111.2(1,2) 147.7(1) 50.6(1) 119.4(1) 94.7(1,3.9) 144.3(1,3.0)	277
[Ag ^I (pmqu)] ₄ ; or, Pbca, Z = 8 P2 ₁ /h, Z = 2.28^{0} Ag ^I ₄ (dppe) ₃ (f) ^a Where more than one chemic: and the second is the maximu ^c Additional AgAg is 431.5(1 95.7(1,5) [•] ^s Additional Ag-I-Ag	3; a = 14 NO ₃) ₄ ; tr. sally equiv um deviat um deviat () pm. ^d A g = 99.8	$62.9(3)$, $b = 1$, $7\overline{1}$, $Z = 1$; 3 alent distance ion from the dditional Ag. 2(4)°.	1539.4(3), c a = 1274.89 a or angle is 1 mean. ^b The Ag is 427.5	= $2180.8($, b = 1347 present, the chemical i ((1) pm. e_A	5) pm. ²⁷ 15, c = $(15, c)$ = mean v dentity c dentity c	8 [$ag^{1}(\alpha - C_{10}H_{7}C_{10}H_{7}C_{10}H_{7}C_{10}H_{10}$ alue is tabulated of the coordinat of the coordinat AgAg are 4'	$S_2(py)]_{4,2py,279}$ $S_2(py)]_{4,2py,3} = 59.748, \beta = 1. The first numbed at a non-ligand i ed at om-ligand i 75.4 and 538.8$	³ [Ag ¹ (2- 63.949 ber in pa ber in pa is specif pm. ^J Ac	MeC ₆ H ₄ CS ₂)(py) and $\gamma = 70.190$ arenthesis is the a ried in these colu- dditional Ag-Br- <i>i</i>)]; m 5°. 281 5°. 291 5°. 2915 5°. 291 5°. 291

130

 $[Ag(PPh_3)I]_4.1.5CH_2Cl_2^{271}$ has a chair-like configuration, as shown in Figure 2, which clearly shows two non-equivalent silver(I) atoms. The atoms Ag(1) and Ag(1)' are approximately trigonally coordinated (AgI_2P), while Ag(2) and Ag(2') are tetrahedrally coordinated (AgI_3P). This unprecedented type of isomerism allowed a detailed stereochemical comparison, which has been fully discussed in the original literature.²⁷¹

There are two examples^{274,275} where four silver(I) atoms are positioned in a butterfly arrangement with the ligand on the "wing-tip" silver atoms. The shortest Ag–Ag distance in the former compound²⁷⁴ is between the "body"atoms, about 308–311 pm. In the second case²⁷⁵ the value is 367–396 pm (Table 13B). A similar structure is found for other silver complexes.^{279,280} Unfortunately, the only data obtained for these compounds were from Chemical Abstracts (footnote to Table 13), and therefore a more detailed comparison of this group of derivatives is not possible.

The structure of monoclinic $Ag_4(dppa)_2Br_4^{248,276}$ is a tetragonal bipyramid with four silver(I) atoms in the equatorial plane and the bromine atoms in axial positions. The Ag-Ag edges are alternatively bridged by bromine atoms and dppa ligands. A colourless derivative²⁷⁷ has one Ag(I) atom in a distorted tetrahedron of AgO₃N, the other Ag(I) atom forms part of an approximate plane of AgO₂N. Two phthalate groups coordinate two silver atoms in a fourteen-membered

Figure 2

ring. The additional bridging capacity of two of the four oxygen atoms subdivides the fourteen-membered ring into one four- and two seven-membered chelating rings.

The mean Ag-L bond distances for tetrahedrally-coordinated Ag(I) atoms in the tetranuclear species increases in the sequence: 233.2 pm (LN) < 242.3 pm (LP) < 254.6 pm (LS); for μ -bidentate ligands the order is: 239.2 pm (LO) < 274.3 pm (LSe); for μ -vs μ_4 -Br and I the order is: 266.3 pm vs 283.3 pm < 287.2 vs 287.8 pm, respectively.

The mean Ag-L bond distances found in the trigonal species are shorter than those in the tetrahedral species, for example: 236.1 vs 242.3 pm (LP); 264.1 vs 266.3 pm (μ -Br); 276.2 vs 287.2 pm (μ -I) and 260.2 vs 274.3 pm (μ -bidentate Se-donor ligands). However, for μ -bidentate O-donors the opposite trend is observed, 251.0 and 239.2 pm, respectively.

The shortest single Ag–Ag bond distances found for tetranuclear species increases with increasing coordination number in the order: 237.3(2) pm (digonal) < 279.9(2) (trigonal) < 296.1(2) pm (tetrahedral).

Two orthorhombic derivatives $[Ag(pip)I]_4^{265,266}$ differ mostly by degree of distortion, an example of distortion isomerism, which is also common both in the copper complexes^{42,44} and gold complexes.⁴³

Thirty-seven tetranuclear silver(I) compounds have been studied and analyzed (Tables 11–13) which is much less than the one hundred and fifteen copper(I) examples.⁴² In general, in the M(I) digonal species an eight-membered ring type is the most common structure. In the M(I) coordinated examples, a rhombus or adamantane-like arrangement is most common, and in the tetrahedral M(I) examples it is the cubane-like structure. The mean M(I)-L(terminal) distances are shorter than the M(I)-(bridge) values, and the general order observed is Cu(I)-L < Au(I)-L < Ag(I)-L.

6. OLIGONUCLEAR SILVER COMPOUNDS

Structural data for the oligonuclear silver compounds are listed in Table 14. Included are pentanuclear,²⁸² hexanuclear^{283–293} octanuclear,²⁸⁹ nononuclear,²⁹⁹ decanuclear²⁸⁹ and tetradecanuclear.²⁹⁸ In all cases the silver is found in the oxidation state of +1.

In the pale yellow pentanuclear compound,²⁸² five silver atoms form a trigonal bipyramid with Ag-Ag distance within the same cage of 335.7 pm (trigonal plane) and 401.5 pm (axial axis), and a distance of 318.1 pm between different cages. The molecular cage contains six doubly-bridging thiolate ligands, leading to trigonal planar coordination for the silver atoms related by a two-fold axis, and digonal linear coordination for the three other silver atoms related by a three-fold axis (Table 14).

There are eleven hexanuclear silver(I) derivatives. A white compound²⁸³ reveals the presence of a planar Ag₆ cluster in which three radiating pairs of Ag(I) atoms 305.1(1) pm apart are disposed on the corners of an equilateral triangle. The inner silver atoms are 349.3(1) pm apart, and each silver atom is linearly coordinated by imidazole ligands. The structures of some pale yellow derivatives are identical.^{284,285,288} The silver atoms form a distorted octahedron in which each silver is tri-coordinate. The Ag-Ag distance²⁸⁴ ranges from 290.5(1) to 401.4(1) pm and indicates the highest degree of distortion of the Ag₆ octahedron of this set. The

Table 14 Structural data for olig	onuclear silv	er compound	s. ^a							
Compound	Cryst. cl. Space gr.	[ud] <i>q</i> [bm]	α [°] β [°]	Chromo- phore		T-M	M-M [pm] shortest		L-M-L	Ref.
	Z	c [bm]	۲ [۲]			[bm]	longest M-L-M [°]		[。]	
$[Ag^{l}_{5}(Me_{2}N(CH_{2})_{3}S)_{3}$	hx P6,22	1363.0(2)		AgS ₂	μS ^b	228.9	318.1	401.5	170.7	282
{Me}2NH(CH2)3}3}3(ClO4)2	, ,	1607.8(3)		AgS ₃	чS	258.0			119.7	
[Ag ^t (im)2]6(CIO4)6	hx R 3c	1444.4(10) - 548444		AgN2	Z	208.2(3,7)	305.1(7) 349.3(1)		not given	283
[Ag ¹ {(Pr) ₂ NCS ₂ }] ₆	PI PI	J404(4) 1337.4(5) 1237.5(5)	96.10(2) 116.40(2) 83.7440	AgS ₃	s µS	244.9(15,31) 251.2(13,44)	290.5(1) 401.4(1) 07 4/4 9 5/		99.6(5,5.5) 127.1(5,9.9)	284
[Ag ¹ {S ₂ CC(CN(₂)] ₆ · (PhCH ₂ NEt ₃) ₆	- 1 <u>-</u> -	(c)/(c)/(c)/(c)/(c)/(c)/(c)/(c)/(c)/(c)/	84.84(5) 84.84(5) 87.06(1)	AgS ₃	S µS	246.9(6) 252.7(7)	301(2) 374(5)		not given	285
[Ag ^l (Et ₂ NCS ₂)] ₆	$m_{\rm P2_1/c}$	1896.9(4) 1090(2) 2472(1)	81.92(0) 125.8(1)	AgS ₃ (4x)	s Su	250.0(3) 253.0(3,52)	284.1(1) 409.1(1)		118.4(9,19.0)	286
[Ag ¹ ₆ (4-ClC ₆ H ₄ S) ₆ .	2 P1	(2)101(2) (5)2.4(5) (848.8(5)	82.14(2) 86.19(2)	AgS ₄ (2x) AgS ₃ (2x)	S µS µ ₃ S	247.1(3) 273.3(2,261) 244.4(4,37) 257.6(4,120)	287.5(2) 318.9(2)		95.5(9,11.7) 155.03(9) 108.3(1,18.7) 143.0(1,8.4)	287
(P.P.h ₃) ₅ J(toi) ₂	7	(01)0.0002	00.45(<i>3</i>)	AgS ₂ P	μ3 Ση	250.3(4) 265.6(4)	95.0(1,7.8)	$^{\mathrm{S,S}b}_{\mathrm{S,P}}$	95.8(1) 126.2(1,5)	
				AgS ₃ P (2x) AgS ₂ P ₂	г Р Р3S Р	240.3(4) 268.2(4,89) 245.5(4,4) 265.6(4,28) 250.4(4,25)		S, S S, S P, P P S, S S, S S S S S S S S S S S S S S S S	101.9(1,10.2) 116.1(1,12.5) 86.2(1) 112.4(1) 116.0(1.4.8)	
[Ag ^l {Pr ₂ NCOS}] ₆	m P2 ₁ /a 2	1331.3(5) 1990.4(8) 1190.1(5)	93.28	AgS ₂ O	0 Srl	236(4,2) 246(1,3)	294.3(5) 328.1(5) 80.2(4,3.3)	S,S	125.(5,1.0) 113.1(9,3.8)	288

Downloaded At: 16:44 23 January 2011

Table 14 Continued										
[Ag ¹ {3-(Me ₂ Ph)Si-2-(S)C ₆ H ₃ N)] ₆	or Pbca 4	1757.6(3) 1863.4(3) 7584 5(6)		AgS ₂ N	z Si	231.7(10,17) 248.0(3,16)	315.7(2)	S,S S,N	124.6(1,1.9) 113.0(3,4.1)	289
[Ag ^I (Me ₃ SiNC ₅ H ₃ S)] ₆ ·CH ₂ Cl ₂	с С2/ш	2061.1(3) 2061.1(3)	95.46(1)	AgS_2N	N Su	230.6(3,6) 247.7(2,3)	332.3(1) 80 7/1 3 31	S,S S,N	124.8(2) 117.8(2,8)	290
[Ag ^I (CNO)] ₆	rtig R3	908.7(3)	115.73(3)	AgO_xC_2	0	249.7(4) 278.8(8,57) 216.4(7.13)	281.9(1) 81 3(3)	С,С	166.0(3)	291
[Ag ^l çl8](Me ₆ en)	PI PI	1047(1) 958(1) 786(1)	101.4(4) 101.8(4) 95.5(4)	Agl4	сн Ген	287(1,11)	(c)c'to		109.3(1,13.8)	292
[Ag ^l ₆ (Ph ₃ CCS ₂) ₆ (py)]·6dmf	c P2/n <u>3</u> 4						297.5 351.2			293
[{Ag ^I (Pr ¹ ;C ₆ H ₂ SCS ₂)} ₂ . {Ag ^I (Pr ¹ ;C ₆ H ₂ S)} ₆]8CHCl ₃	m P2 ₁ /n 2	1789.7(7) 2713.1(18) 1911.1(9)	113.59(3)	A _g S ₂	Sul	236.9(8,17)	278.2(3) 335.0(3) 107.9(3,10.6)		156.0(3) 173.4(3,1)	294
[Ag ^l {(Me ₃ Si) ₂ CHS}] ₈	т С2/ <i>с</i>	1833.9(4) 2462.3(4) 2447.3(4)	96.74(1)	AgS ₂	Suj	240.1(4,17)	290.4(2) 309.4(2) 77.2(1.3.2)		175.6(1,9)	247
[{Ag ^I (2-Me ₃ SiC ₆ H ₄ S)] ₄] ₂	а 4 4	1192.3(2) 1476.1(2) 2661.8(4)	98.30(1)	AgS ₂	Su	238.7(9,10)	306.5(4) 332.0(5) 82.2(3.12.7)		79.0(3) 113.4(3) 170.3(3.5.2)	295
[Ag ¹ 82CC(CN) ₂]6]·(NBu4)4	$_{221/c}^{m}$	1575.6(2) 2251.6(3) 1807.8(3)	107.50(1)	AgS ₃	μS	249.1(4,29)	295.7(2) 308.5(2)		not given	296
Ag ¹ 8(Et ₂ MeCS) ₈ (PPh ₃) ₂	m P2 ₁ /c 4	1473.6(8) 2710.8(4) 2494(2)	99.85(3)	AgS ₂ (2x)	Sul	237.9(6,18)	not given c		172.0(2,1.2)	298
				AgS ₂ AgS ₃ (2x)	μ ₃ S μ ₃ S	237.3(5,15) 240.3(6,3) 241.2(5,15) 286.8(5,5)			173.3(2,5) 169.6(2,3.9)	
				AgS ₃ P (2x)	Ρ μS μ ₃ S	243.5(5,1) 250.3(6,5) 264.3(5,1) 293.2(5,35)		S,S S,P	$\begin{array}{c} 102.8(2,1.9)\\ 115.6(2,2.5)\\ 136.9(2,1.6)\end{array}$	

C.E. HOLLOWAY et al.

Downloaded At: 16:44 23 January 2011

Continued	
14	
Table	

(PPh4)3	в	1389(4)		AgS_2	μ₃S	247.8	not given		177.4(4)	299
[Ag ¹ ₉ (SCH ₂ CH ₂ S) ₆]3MeOH	$P2_{1/n}$	4005(13)	93.4(3)	c	ł		d			
	4	1678(7)		AgS ₃	usS UzS	251.2 264.6				
[Ags(SC5H3N-3-SiMe2)	tr	1310.3(3)	63.88(1)	AgS ₃	µ3S	248.9(3,16)	285.6(1)	S,S.	104.5(1)	289
1 2 2 2	P1	1476.6(3)	80.27(2)	(2x)	ыS	253.7(2)	386.7(1)		123.3(1,6)	
Ph)6. Ag2(NO3)2. (MeOH)2]	1	1560.0(3)	72.35(1)							
				AgNS	Z	220.0(5)		Z,S	150.1(1)	
				(2x)	μ ₃ S	240.3(2)				
				Agons	z	220.8(5)		N,S	171.6(2)	
				(2x)	(MeOH)O	262.3(5)			~	
					цS	241.7(2)				
				AgONS	Z	217.9(5)		N,O	84.0	
				$(2\mathbf{x})$	0 ² NO	262.4(5)		O,S	107.6	
					μS	238.2(2)		N,S	167.1(2)	
				AgO ₂ S	βŗη	278.4(2)		0,0	139.2(2)	
				$(2x)^{-1}$	0 ² NO	239.5(8,35)		0,5	107.6(2,13.3)	
Ag ¹ ₁₄ (Bu ^t S) ₁₄ (PPh ₃) ₄	Ħ	1352.3(8)	79.86(4)	AgS,	ILS	237.9(8,37)	309(1)		172.4(3,2.3)	298
	P <u>1</u>	1385.2(7)	86.08(4)	(10x)			314(1)			
		2180.8(12)	85.75(4)				97.9(3,9.7)			
				AgS_2P	Р	245.4(8,6)		S,S	118.2(3,1)	
				(4x)	μS	253.9(9,56)		S,P	120.2(3,10.5)	
^a Where more than one chemicall and the second is the maximum ^c Ag-S-Ag = $88.8(2,10.4)$ and 12.	y equival deviation $8.4(2)^{\circ}$, d_{i}	ant distance of a from the m Ag-S-Ag = 78	r angle is pream. b The can. b The c.2 and 116.	cesent, the themical id 6(3,2.4)°;	mean value i: lentity of the Ag-μ ₃ S-Ag =	s tabulated. Th coordinated a 76.1 and 150	ne first numbe atom/ligand is .3°.	rt in parer specified	nthesis is the e.s. I in these colum	d., ns.

Figure 3

mean Ag-S(terminal) distances (245.9 pm) are shorter than the Ag-S(bridge) value of 250.0 pm. In another example, light yellow $[Ag(Et_2NCS_2)]_6$, six silver atoms form a bent chain.²⁸⁶ Four silver atoms are connected to three sulphur atoms (AgS₃) and the remaining two have four sulphur donors (AgS₄). The structure of colourless Ag₆(4-ClC₆H₄S)₆(PPh₃)₅²⁸⁷ is shown in Figure 3. The

The structure of colourless $Ag_6(4-ClC_6H_4S)_6(PPh_3)_5^{287}$ is shown in Figure 3. The structure contains a $Ag_6(SR)_6$ central cage with PPh₃ terminal ligands at three of the silver atoms and a $Ag(PPh_3)_2$ appendage inserted between two bridging thiolates. There are four non-equivalent silver(I) atoms (Table 14). The Ag-Ag distance ranges from 287.5(2) to 318.9(2) pm with a mean value of 301.5 pm. A yellow derivative²⁸⁹ possesses a centre of symmetry at the centroid of the Ag₆S₆

A yellow derivative²⁸⁹ possesses a centre of symmetry at the centroid of the Ag_6S_6 "drum", with a *pseudo*-three-fold axis passing through the centroids of the Ag_3S_3 rings. The $-C_5H_5N(SiMe_2Ph)$ fragments of the ligands provide the six links between the rings such that three thiolate and three pyridine donors ligate alternately to each ring. A similar structure was found in another example²⁹⁰ (Table 14). A colourless hexanuclear derivative²⁹² has each silver atom tetrahedrally surrounded by iodine atoms with all the tetrahedra doubly edge-shared.

There are five examples of the octanuclear silver cluster. The molecular structure of a pale yellow example²⁹⁴ consists of eight coplanar silver atoms linked through arenethiolate (RS) and arylthiocarbonate (RSCS₂) ligands. The structure of another

two octanuclear clusters^{297,295} also consists of a ring of eight units of alternating silver and sulphur atoms.

The structure of a yellow decanuclear cluster²⁸⁹ is shown in Figure 4. There is a crystallographically imposed centre of symmetry at the midpoint of the Ag(1)...Ag(1a) vector, with five chemically and crystallographically unique silver sites (Table 14). The structure of a colourless tetradecanuclear cluster, shown in Figure 5,²⁹⁸ consists of a single 28-membered ring of alternating silver and sulphur atoms, with ten linear S-Ag(dig)-S segments and four angular segments in which phosphine ligands are attached to give trigonal-planar coordination of Ag(trig).

The data in Table 14 reveal that the "soft" sulphur donor ligands are by far the most common in this series. The silver atoms are found in digonal, trigonal and tetrahedral arrangements. The mean Ag-L distances increase with increasing coordination number. For example, the μ -S bidentate ligands are in the order: 238.2 pm (digonal) < 248.0 pm (trigonal) < 250.8 pm (tetrahedral); for the unidentate P ligands the order is: 245.4 pm (trigonal) < 247.1 pm (tetrahedral); for the μ_3 -S ligands the order is: 261.6 pm (trigonal) < 278.7 pm (tetrahedral).

7. POLYNUCLEAR SILVER COMPOUNDS

7.1. Coordination number two

The structural data for these compounds are given in Table 15. Some of the derivatives contain silver atoms of coordination greater than two and these are

Figure 4

Figure 5

cross-listed to the appropriate table. The structures are arranged in order of increasing covalent radius of the ligand donor atom, and increasing atomic number of the principle coordinating ligand atom. There are fifty polynuclear examples listed in Table 15, and the "soft" nature of the silver(I) atom is reflected in the structures of the polymers. There is no straightforward classification of the structures as in the previous cases. The structure of colourless $[Ag_2(2-ClC_6H_4OCH_2CO_2)_2-Ag(ClO_4)]^{300}$ is shown in Figure 6. It can be seen that this polymer is based on a bis(carboxylato-O,O') bridge with a Ag-Ag distance of 280.9(1) pm, the shortests in this series of compounds. This is an unusual structure for at least two reasons. The first is the bridging of the carboxylate oxygen atom O(11B') through the axial site, with a Ag(2)–O(11B') distance of 237.3(4) pm. The second is the occupation of the other axial site by a perchlorate group (Ag(1)-O(1) = 245.4(4) pm).

In another example³⁰² triazenide ligands form three-atom bridges bringing the silver atoms within 283.7(1) pm. The associated N-Ag-N angles are 174.7(3)°. The structure of orthorhombic $Ag\{N(CN)_2\}^{310}$ consists of infinite chains -Ag-N-C-N-C-N-Ag running parallel to the *a* direction. The polymeric structure of $[Ag_{13}(MeHNC_5H_9S)_{16}]^{+13}$ ³⁴⁰ contains $Ag_{10}S_{16}$ units linked by three silver atoms. Each unit contains a central $Ag_6(\mu$ -SR)₆ core and two $Ag_4(\mu$ -SR)₄ rings, comprising digonal, trigonal and tetrahedral silver atoms, with both doubly- and triply-bridging sulphur atoms (Table 15). The $Ag\{N(CN)_2\}$ system exists as a trigonal³⁰⁹ and

2011
January
23
16:44
At:
Downloaded

Compound	Cryst. cl. Sance ar	a [pm] A [pm]	α[°] Α[•]	Chromo-		M-L	M-M [pm] M.I _M [°1	L-M-L	Ref.
	Space B1.	c [bm]	[.] X	piloie		[md]	[] 1A1~7-TA1	[。]	
[Ag ¹ ₂ (2-CIC ₆ H ₄ OCH ₂ ·		1024.5(2)	75.27(2)	AgO ₂	φ	230.9(4,13)	280.9(1) 110.6(2)	126.4(4)	300
	2	1106.7(2)	82.70(2)	AgO ₃ AgO ₃	000	230.0(4,73) 227.1(4,13) 245 4(4)	(7)0.011	76.3(2) 102.1(2,9.4) 158.1/2.1.0)	
Ag ^r 2(malonate)	т Р7,/с	488.0(1) 972 5(4)	104 44(1)	AgO	0.00	214.9(7)	285.1(1)	(301
	4	1388.3(2)		AgO4	0	227.0(7,103) 266.8(7)		96.6(3,16.2) 162.3(7)	
Ag ^l (F ₃ CC ₆ H ₄ N ₃ C ₆ H ₄ F ₃)	m P2 ₁ /c 8	2943(2) 475.8(5) 2280(1)	111.99(6)	AgN ₂	Z	210.0(7,30)	283.7(1,3)	174.7(3,2.5)	302
[Ag ¹ ₃ (HN ₂ O ₂ S)(NH ₃)]H ₂ O (at 108 K)	or Pcam 4	1181.3(6) 966.5(5) 657.8(7)		AgN_2	H ₃ N	208(1) 211(1)	312(-,22)	173.5(5,2.5)	303
[Ag ¹ ₃ (SO ₃ N)(NH ₃) ₃]2H ₂ O	or P2 ₁ 2 ₁ 2 ₁	627.5(1) 1182.6(2) 1429.9(12)		AgN_2	Н ₃ N µ ₅ N	213.4(15,34) 209.3(15,9)	324.7(3,134)	174.6(7,7.9)	304
[Ag ^I (NH ₃) ₂]. [Ag ^I .(SeO.NVNH ₂).]. 7H <u>-</u> O	of D7.7.7.	1186.4(3)		AgN_2	Ν ^ε Η	213.3(10,18)		170.0(4)	10
	4	643.3(2)		AgN_2	H ₃ N א _ל א	211.0(8) 211.1(8)		177.4(3)	
[Ag ^I (H ₂ NCH ₂ CH ₂ NH ₂)]. CIO4	m P2 ₁ /c	883.4(4) 988.5(2) 080.371)	125.09(2)	AgN ₂ AgN ₂	N ³ N	210.1(7,5) 217.1(11,1)	327.7(1)	178.7(3) 175.8(3)	305
[Ag ^l (NH)] ₂ ·SO ₂	т т Р2 ₁ /с	766.1(1) 571.9(1) 1046.4(1)	93.89(2)	AgN_2	٨	213(2,1) 220(2)		172.3(-,6.9)	306
Ag ₃ (Et ₂ SN ₂)NO ₃	or Pbcn 4	681.3(2) 681.3(2) 2152.7(6) 683.8(2)		AgN ₂	z	215(-,3)		not given	307
[Ag ⁱ (C ₈ H ₆ N ₂)]ClO ₄	or Pmc2 ₁	721.1(2) 699(2) 7037 5(5)		AgN ₂	z	220.6(3,6)		not given	164
Ag ¹ {N ₃ P ₂ {NH ₂ }4SO ₂ }	т т Р2 ₁ /п 4	990.8(2) 930.6(3) 1056.3(5)	108.75(5)	AgN2	z	221.7(9) 225.5(9)		147.0(3)	308

Table 15 Structural data for polynuclear silver compounds, coordination number two^a

Table 15 Continued										
Ag(N(CN) ₂)	$rrg_{P3_12_1}$	360.1(2) 		AgN ₂	z	211(1)	360.1	-	172.9(9)	309
Ag{N(CN) ₂ }	з ог Рпта	2286.8(22) 1613.3(8) 361.2(2)		AgN_2	Z	211(2,3)	361.2		177(1)	310
[{Ag ^J (CN) ₂ }]2](AsF ₆) (at 233 K)	t C2/m	598.3(3) 866.5(-) 836.3(3)	122.06(3)	AgN_2	z	236.4(7) 239.9(6)			not given	311
Ag ^I (NCO)	2 m P2 ₁ /m	819.8(4) 547.3(9) 637.2(11)	91.0(5)	AgN ₂	Z	211.5(8)			not given	312
[Ag ¹ (C ₁₆ H ₁₄ N ₂ Cl ₂)]. CF ₃ SO ₃	2 or P2 ₁ ca	341.6(6) 1230.5(3) 1273.9(4)		AgN_2	Z	213.1(15) 216.4(15)			173.3(6)	316
Li[Ag ^I (succinate) ₂]4H ₂ O	4 or Pnma	1322.9(9) 1209.1(2) 893.4(1)		AgN_2	Z	208.8(2,1)			178.48(8)	317
[Ag ^I ₂ (succinate) ₂ (H ₂ O)]	4 86	1298.1(2) 803.1(4) 1330.6(7)	16/31 10	AgN_2	z	207.3(6,6)			169.0(2)	317
	4	1034.5(2)	(0)01.16	AgO_4	$_{ m H_2O}^{ m O}$	239.3(5,55) 236.7(6)			76.2- 139.3(2)	
Ag ^l (glycinate)0.5H ₂ O	m P2 ₁ /n	890(1) 643(1)	97.83(1)	AgN_2	z	not given				17
Ag ¹ 4(SO ₂ N ₂)	or Dang	1535(2) 1042 578(1)		${ m AgO_2} { m AgN_2}$	oz	213 216(-,3)	292(-,12)		172 167(-,7)	318
	r 11a-1 4	895(1)		AgON	02	220			173	
$[Ag^{I}(C_{6}H_{11}N)(H_{2}O)_{0.5}]$	E A	1281.0(2)	(1)0 00	AgN_2	ZZ	216(1,0)	(0 C 3/L 00		172.3(5)	319
CLO3	r∡ı/11 8	(0.1.0)	(1)0.06	AgN ₂ O	Z	227(1,1)	(0.2,C)/.60 N N	,N N	144.0(4)	
$Ag^{l}(NH_{3})_{2} \cdot Ag(NO_{2})_{2}$	tg D A	963.3(5)		AgN_2	H ₃ N	211.5(6,3)	2	<u>,</u>	178.3(3)	320
	t 4			AgN ₂ O	02N OINC	226.7(6,42)			not given	
Ag ^I (3-SO ₃ py)	tg 1 A	1231.6(2)		AgN_2) N N	213.9(3)	299.7(7,15)		172.4(2)	321
	t∞	<u>-</u> 900.7(3)		AgO_4	0	237.3(3,4)			90.10(1) 112.0(2,7.1)	

Downloaded At: 16:44 23 January 2011

140

Table 15 Continued										
[Ag ¹ 4[S(NSO) ₂]9]· (AsE2)SO2	rh P 3,	1824.9(5)		AgN ₂	z	238.1(20,60)			154.5(7)	322
2.00 \$10 years	6	3595(2)		AgO_{6}	0	251.7(18,13)			75.4-	
Ag ¹ (CNO)	trg R3	910.9(15)	115.44	AgC ₂	U	217(3,2)	282		163 163	323
Ag ^I (CNO)	or Cmcm	386.4(6) 1072.2(18)		AgC_2	υ	223(2)	293		180	323
Ag ^I (CNO)	or Cmcm	388.0(2) 388.0(2) 1075.2(5) 580.4(2)		AgC ₂	U	218.3(5)	290.2(1) 83.3(1)		180.0	324
Ag ¹ 2C2O	tg P4	402.8(1)		AgC_2	с	not given	284			326
[Ag ^I (tmb)]BF4	п С2/с	584.6(4) 2730.7(4) 803.2(2)	122.53(2)	AgC_2	U	207.3(8,2)			167.8(3)	327
[Ag ^I (CN) ₂](ttf)	o Pnmn ,	879.4(3) 2033.3(7) 2033.3(7)		AgC ₂	с	210.3(5,0)			not given	328
Na[Ag ^l (CN) ₂]	ч С2/с	424.7(2) 657.2(1) 371.0(1) 1724.6(7)	92.05(1)	AgC ₂	U	200.9(16,0)	374.2(-,32)		180	329
$Ca[Ag^{I}(CN)_{2}]_{2} \cdot 2H_{2}O$	er Pbcm	843.5(1) 639.85(6) 1559.420		AgC ₂	C	206.(2,1)			180.0	330
Sr[Ag ^l (CN) ₂]2·2H ₂ O	4 or Pbcm	1806.4(2) 800.32(8) 686.88(8) 1887 0(1)		AgC ₂	C	207(2,0)			176.9(7,3.1)	330
Ag ^I (PhCC)(PMe ₃)	н С2/с	1150(2) 2058(3)	123.25(10)	AgC_2	U	204.0(13,0)			180	331
	80	1212(2)		AgC_2P_2	U d	255.2(14,0) 249 0(4 0)		U a	107.4(6)	
[Ag ^l {cy(mt) ₂]ClO ₄ ·2H ₂ O	or P2 ₁ 2 ₁ 2 ₁	2938.0(7) 1042.9(2)		AgS ₂	лSц	239.8(7,5)	4	1	171.1(3)	332
Ag ^I (ET ₂ MeCS)	5 11	002.0(2) 1210.5(2) 1428.9(2) 1953.9(3)	85.77(1) 87.77(1) 86.30(1)	AgS ₂	Su	237(1,3)	323.2(5,346) ^c 95.0(5,9.7)		173.2(4,4.5)	333

Downloaded At: 16:44 23 January 2011

Table 15 Continued									
$Ag^{I}(C_{6}H_{11}S)$	н Р <u>1</u>	1482.7(3) 1574.7(3)	103.68(1) 107.71(1)	AgS_2	μ₃S	240(1,4)	$306.1(5,223)^d$	168(-,1)	334, 335
[Ag4{(Me ₃ Si) ₃ CH ₂ S) ₃ .	н 12 1	1121.8(1) 1702.3(3)	91.79(1)	AgS ₃ AgS ₂	µ ₃ S µS	257(1,30) 247(2,17)	314.3(8,251) ^e	90-154 117.5(6,7	2) 247
(MeO) ²]	C2/ <i>c</i> 16	2947.0(5) 2337.2(4)	104.21(1)	AgS ₂ O	μ ₃ S	241(2,4) 272/5 5)	S,S S	165.5(6,7 3 166.1(7,2 7 not eiven	3)
Ag ¹ (glycinate)	5 PI	524(1) 571(1) 690(1)	84.21 71.33 84.44	AgON	oz	211) }	177	17
a-Ag ₃ NSeO ₃	rh R3c	846.2(4) - 1137.2(6)		AgON	e ^N	222.9(12) 216.4(8)	107.3(6)	174.5(5)	336
NaAg ^I (SO ₃)2H ₂ O	tr P <u>1</u>	594.9(5) 927.7(9) 546.5(3)	101.06(8) 90.65(6) 117.29(6)	AgOS	S 0	219.4(9) 247.4(4)		169.5(2)	337
Ag ^I (CF{CF ₃) ₂)(MeCN) (at 203 K)	or P2na 2	629.7(3) 689.0(3) 1993.0(10)		AgNC	zυ	208.3(7) 210.4(11)	320.6(1)	180	30
Ag ^l (SCN)	т С2/ <i>с</i> 8	874 796 1232	138.6	AgNS	Z S	222.3(28) 242.8(11)		164.50	338
Ag(CN){Ag(NO ₃)} ₂	m P2 ₁ /c 2	620.2 1134.3 727.4	45.55	AgNC	zυ	not given 205.8(8)	530	not given	339
				Ag0 ₇ C	၀ပ	262(-,26) 258			
[Ag ^I ₁₃ (Me(H)NC ₅ H ₉ S) ₁₆] ·(ClO ₄) ₁₃	tr P <u>1</u>	2112.9(4) 2038.3(4)	121.59(3) 114.53(4)	AgS_2	S	240(8)	300	not given	340
a :	-	1517.2(3)	96.21(3)	AgS ₃ AgS4	s s	250(7) 261(9)			
$\begin{array}{l} \mathbf{Ag}^{1}(2,4\text{-}Cl_{2}C_{6}H_{3}OCH_{2}CO_{2});\\ \mathbf{P2}_{1}/\mathbf{n}, Z = 8; a = 910.0(2);\\ \boldsymbol{\beta} = 102.21^{\circ}{}^{313}\mathbf{Ag}^{1}(\mathbf{NCO});\\ \boldsymbol{c} = 682\mathrm{pm.}{}^{315}\mathbf{Ag}^{1}(\mathbf{CNO}); \end{array}$	m, $P2_1/n$, Z_1/n , $D = 1350$, m, $P2/m$, Z , or, Imca, Z	Z = 8; a = 893(6), c = 1570= 1; a = 552= 4; a = 604	(3(2), b = 133) (2(5) pm; b = 318(3) (5), b = 318(3) (5) b = 388, c	2.1(3), c = 100.12(2) 100.12(2) c = 342 c = 1120 pm	$\frac{1594(4)}{2000}$ Ag pm; β		7(1)*. ³⁰⁰ Ag ¹ {4-C1-(2-N)} $C_{1/c} Z = 4; a = 726, C1-(2-N)$ $C_{1/c} Z = 4; a = 726, C1-(2-N)$	$ \frac{Ae}{b} = 592, c = b = 592, c = c = 548, $	CO_2 }; m, 661 pm; b = 637,
^a Where more than one chem and the second is the maxim range 288.6(4)–335.9(5) pm.	uically equiv um deviatio ^d Ag-Ag rar	valent distance in from the mea inge 291.1(5)-32	or angle is prea in. ^b The chemic 8.6(5) pm. ^e Ag	sent, the m cal identity t-Ag range	ean val of the (289.2(8	ue is tabulated coordinated atc ()-335.0(8) pm.	. The first number in r m/ligand is specified in	parenthesis is these column	he e.s.d., s. ^c Ag-Ag

C.E. HOLLOWAY et al.

142

Downloaded At: 16:44 23 January 2011

Figure 6

orthorhombic³¹⁰ modification, differing by degree of distortion. Similarly, Ag(CNO) exists in two isomeric forms^{323,324} as does Ag(NCO).^{312,314,315}

Bidentate ligands are by far the most common in this series. The mean Ag-L distance for the bidentate ligands increases with decreasing covalent radius of the coordinated atom in the order: 210.4 pm (C, 77 pm) < 214.5 pm (N, 75 pm) < 222.0 pm (O, 73 pm), indicating that ligand size is an important factor.

7.2. Coordination number three

These compounds are listed in Table 16 together with their structural data. Silver(I) carboxylates, based on a variation of the bis(carboxylato-O,O')-bridged dimer, were previously classified into four types.³⁴² Three have been found as a polymeric derivative in this survey. There are six examples of silver(I) carboxylates^{261a,341,342,343} and five of them contain bis(carboxylate-bridged Ag₂) dimeric units.^{261a,341,342} In some examples the dimeric units are extended stepwise into polymeric forms *via* the adjacent carboxyl oxygen atoms.^{261a,341} In one of two derivatives³⁴¹ water occupies an axial coordination site. In another³⁴² a centrosymmetric dimer is extended into an infinite zig-zag polymer through the axial positions *via* the carbamoyl oxygens of adjacent ligands. In another³⁴³ two different carboxylato groups of pyridinioacetate ligands bond to two different silver atoms with a third linked to a nitrate group. Each pair of adjacent silver(I) atoms are bridged in the syn-syn mode by the carboxylato group of a single pyca ligand, resulting in a zig-zag polymeric chain as shown in Figure 7. This arrangement differs substantially from all other known silver(I) carboxylates.

The shortest Ag-Ag distance of 284.2(1) pm³⁴¹ found in this trigonal silver(I) polymeric series is about 3.3 pm longer than that found in digonal derivatives

(Table 15). It is noted that the mean Ag-L distance in the series of bidentate ligands increases with decreasing covalent radius of the coordinated atom, as found in the digonal derivatives. The order of Ag-L is: 215.9 pm (C) < 227 pm (N) < 228.1 (O). In general, these distances are longer than those of the digonal series above.

7.3. Coordination number four

There are over one hundred polynuclear examples, and only silver in the oxidation state of +1 is involved. There are a few examples in which silver is found with both four and higher coordination numbers. From a bridging point of view, this series is very complex. There are four examples^{341a,356} which are structurally similar, being composed of centrosymmetric syn-syn carboxylato-bridged Ag₂(RCO₂)₂ dimers extended into a carboxylate oxygen atom linked polymer resembling a flight of stairs. In addition, the primary coordination sphere about the silver(I) atom is completed by a nitrate oxygen atom in some cases,^{241a,356} and by a perchlorate oxygen atom, and by an aquo ligand.³⁵⁶ The Ag-Ag distance in this series ranges from 280.0(2) to 290.1(2) pm, indicating the existence of Ag-Ag bonds. The mean Ag-O(carboxylate) distance of 221.6 pm is shorter than that of Ag-O(bridge carboxylate) of 238.4 pm. However, the Ag-O distance of the remaining additional O-donor ligands ranges from 241.5(9) to 255.4(3) pm, respectively. The [AgX₂]⁻ anion (X = Cl³⁶⁴ or l³⁷¹) forms a one dimensional infinite polymeric

The $[AgX_2]^-$ anion (X = Cl³⁶⁴ or I^{3/1}) forms a one dimensional infinite polymeric chain composed of edge-sharing AgX₄ tetrahedra with a mean Ag-X(bridge) distance of 260.9 pm (Cl) and 278.1 pm (I), respectively. On the other hand, the $[Ag_2X_3]^-$ anion (X = Cl or Br^{365a,370} or I^{373,374}) contains infinite double-chains composed of edge-sharing AgX₄ tetrahedra with mean Ag-X(bridge) and Ag-X(μ_4 bridge) distances of 252.6 and 271.8 pm for Cl, 263.0 and 285.0 pm for Br and 279.7 and 296.3 pm for I, respectively.

Compound	Cryst. cl. Space gr.	a [pm] b [pm]	α[°] β[°]	Chromo phore	-	M-L	M-M [pm] M-L-M [°]	L-M-L	Ref.
	Z	<i>c</i> [pm]	γ[°]			[pm]		[°]	
$\begin{array}{l} [\mathrm{AgI}_2(\mathrm{Me}_3\mathrm{apr})_2 \\ (\mathrm{H}^2\mathrm{O})] \cdot (\mathrm{ClO}_4)_2 \end{array}$	m P2 ₁ /c	570.0(1) 2492.3(8) 1695.2(4)	93.25(4)	AgO ₃	Ο μΟ	220.6(7,12) 257.3(6)	284.2(1) 101.3(2,1.8)	78.3(2) 115.2(2) 166.4(2)	341 <i>a</i>
	-	1093.2(1)		AgO ₄	Ο μΟ	222.6(6) 226.4(6) 250.0(6)		85.0(4,6.9) 120.4(2) 160.1(2)	
$[Ag^{I}(pypr)]_{2}$ (ClO ₄) ₂	m C2/c	2928.8(6) 554.76(8)	107.47(1)	AgO ₃	H₂O Ο μΟ	259(1) 218.5(2) 221.7(2) 249.7(2)	285.4(1) 102.0(1)	78.0(1) 112.2(1)	341 <i>a</i>
Ag ¹ ₂ (PhOCH ₂ CO ₂) ₂	m P2 ₁ /c 4	1396.2(1) 565.2(1) 1982.7(2)	91.41(1)	AgO ₃	Ο μΟ	249.7(2) 219.8(9,20) 225.5(8,32) 243.0(9.13)	286.6(2)	76.0(3,9) 120.2(3,6) 160.2(3)	261 <i>a</i>
$Ag_{2}^{I}(F_{3}CCOO)_{2} \cdot C_{6}H_{6}$	m A2/m 8	1525.3(5) 967.4(1) 1688.2(6)	95.66(1)	AgO ₃	Ο μΟ	225(1,3) 238(1)	289.3(3)	81.8,116.0(5) 161.6(5)	341 <i>b</i>
		.,		AgO ₃ C	Ο μΟ C	223(1) 242(1,1) 242	285.1(3)	78.1 102.0(5,3.7)	
$Ag_2(sa)_2$	m C2/c 4	2078.9(6) 520.2(1) 1731.8(6)	105.89(2)	AgO ₃	0	224.7(3,19) 249.4(3)	300.1(1)	84.5(1) 116.8(1) 155.8(1)	342
Ag ^I (pyac)(NO ₃)	m P2 ₁ /c 4	1284.9(2) 499.9(1) 1504.7(3)	113.91(1)	AgO ₃	O O ₂ NO	231.2(3,23) 243.4(3)	301.1(1)	86.0(1) 118.3(1) 139.8(1)	343
Ag ^I (NH ₃) ₃ (NO ₃)	tg P62c 2	805.7(2) 584.0(6)		AgN ₃	H₃N	228.1(7)	292.0	not given	8
Ag{C(CN) ₃ }	or I2cm 4	621(1) 1019(2) 798(1)		AgN ₃	N	211(6) 225(4,0)		99.7(2.3) 123.9(1.6)	344
$[Ag_{2}^{I}(tmb)_{3}]$ $(PF_{6})_{2} \cdot 2MeCN$	tr PĪ 1	889.6(5) 909.9(7) 1646.2(6)	97.61(4) 92.14(4) 116.71(5)	AgC ₃	С	215.4(5,32)		119.7(2,9.3)	327
[Ag ^I (tht) ₂]BF ₄	or $P2_12_12_1$	749.7(2) 1143.2(3) 1524.9(3)		AgS ₃	S	250.6(2,61)		119.9(1,4.8)	345a
$[Ag^{I}\{(SCH_{2})_{3}\}_{2}]$ AsF_{6}	$\frac{m}{P2_1/c}$	857.9(2) 2061.8(4) 986 1(2)	107.95(2)	AgS ₃	S	252.4(3,9) 276.4(3)		102.2(1,1.6) 153.4(1)	141
(PPh ₄)[Ag(Se ₄)]	m P2 ₁ /c 4	1414.5(3) 707.6(2) 2493.9(5)	105.23(2)	AgSe ₃	Se µSe	255.3(2) 260.9(2,64)	451.8(3) 119.71(1)	110.4(2,3.8) 138.80(2)	263
$Ag^{I}(B_{11}CH_{12})$ (C ₆ H ₆) ₂	or Pb 2_1a	1021.1(3) 2080.6(3) 914.6(1)		AgH ₂ C	H C	197 240.0(3)		not given	345b
Ag(saca)	m P2 ₁ /n 4	584.9(2) 772.0(5) 2257 3(5)	83.16(1)	AgO ₂ N	O N	237.2(5,36) 221.8(5)	310.2(1)	not given	346
NaAg ^I (NO ₂) ₂ (at 118(1) K) ^c	or Fd2d	760.7(1) 1066.5(1)		AgO ₂ N	0	240.6(3) 270(1)		not given	347
	0	1094.3(1)			IN	223.9(3)			

Table 16Structural data for polynuclear silver compound, coordination number three a

(bet) ₂ [Ag ¹	m	1259.3(3)		AgC ₂ N	С	208.6(5,2)	C,O^b	157.3(2)	348
$(CN)_2]H_2O$	P21	864.2(1)	109.32(2)		Ν	256.4(6)	C,N	101.4(2,3.7)	
	2	1608.0(3)							
Ag ^I (Mead)	m	1440.5(14)		AgN_2O	0	258(1)	N,N	94.4(-,8.7)	353
$(NO_3)H_2O$	$P2_1/c$	739.7(8)	122.13(5)		Ν	216.3(9,20)	N,O	171.1	
	8	2336(2)							
$Ag^{I}(2,6-Me_{2}py)$	m	848.1(3)		AgN_2S	Ν	227.5(1)		not given	354
(SCN)	$P2_1/c$	810.2(2)	97.41(3)						
	4	1367.6(7)			SCN	228(1)			
					NCS	247.4(3)			
Ag ^I (tsc) ₂ (NCS)	or	1149.5(7)		AgS ₂ N	S	243.9(3)	S,S	123.3(1)	194
	Pna2	1504.9(7)			μS	245.6(3)	S,N	118.3(3,1.0)	
	4	660.1(4)			SCN	231.2(12)			

Table 16 Continued

α-(bet)₂Ag(CN)₂; m, P2₁/n, 2; a = 795.6(2), b = 673.2(3), c = 3073.8(8) pm; $\beta = 90.05(1)^{\circ}.^{349}$ (bet)₂Ag(CN)₂; or, P2₁2₁2₁, 2; a = 951.9(2), b = 495.2(1), c = 3392.7(7) pm.³⁵⁰ (bet)₂Ag(CN)₂; m, P2₁/n, 2; a = 1099.6(1), b = 428.1(1), c = 3409.3(5) pm; $\beta = 93.13(2)^{\circ}.^{350}$ (bet)₂Ag₄(CN)₅; or, Fddd, 8; a = 1324(1), b = 1948(2), c = 1962(2) pm.³⁵¹ (bet)₂Cu(NCS)₂; m, P2₁, 2; a = 1624.8(5), b = 844.0(2), c = 1312.4(5) pm; $\beta = 110.30(3)^{\circ}.^{352}$ Ag¹(tu)(SCN); m, C2/c, 8; a = 1032(2), b = 1388(2), c = 1411(2) pm; $\beta = 111.48^{\circ}.^{355}$ "Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specified in these columns. ^cX-ray analysis was taken also at 218, 268, 297, 308, 323, 334 and 343 K. ^dThe Ag-Ag distance ranges from 306.0(3) to 340.2(3) pm.

The chain in the $[Ag_3I_4]^-$ anion^{179,375,376} and $[Ag_3I_3X]$ (X = Cl or Br³⁷⁶ is built up from AgX₄ tetrahedra sharing one edge, and these units are joined to other similar units *via* the free corners. Every tetrahedron contains one Ag(I) atom, but the octahedral sites defined by adjacent pairs of double tetrahedra are only occupied alternately by Ag(I) atoms. The mean Ag-X(μ -bridged) distance increases with the covalent radius of X in the sequence: 262.3 pm (Cl, 99 pm) < 271.6 pm (Br, 114 pm) < 279.5 pm (I, 133 pm). There are only μ_3 - and μ_4 -bridged iodine atoms with mean Ag–I distances of 285.3 and 293.8 pm respectively. It can be seen that the mean Ag–I distance elongates with the degree of multiple bridging as might be expected.

A "stair" type polymer was found in fifteen derivatives of the composition AgLX, where L is unidentate N donor ligands and X is Cl, Br or $L^{197,266,268,402,403}$ This represents the largest series of structurally related derivatives in the silver(I) polynuclear complexes. The Ag(I) atoms are tetrahedrally coordinated (AgX₃N), with the mean Ag-X(μ_3 -bridge) distances increasing with the covalent radius of X, in the order: 267.5 pm (Cl) < 274.8 pm (Br) < 287.4 pm (I), respectively. The mean Ag-N distance increases with the increase in covalent radius of the X atom, in the order: 223.5 pm (AgCl₃N) < 225.4 pm (AgBr₃N) < 234.2 pm (AgI₃N), which reflects the increase in steric crowding. There is an interdependence between the mean Ag-Ag distance and the Ag-X-Ag bridge angle, the former elongating as the latter opens (Table 17).

There are three derivatives of the type Ag(dea)X (X = Cl, Br or I)²⁶⁶ which are tube-like polymers. The structures of the "stair" type Ag(2-Mepy)I²⁶⁶ and the "tube" type Ag(dea) I polymers are shown in Figures 8 and 9 for comparison. The mean Ag-X(μ_3 -bridge) distance expands with covalent radius of X in the order: 270.0 pm (Cl) < 276.6 pm (Br) < 287.4 pm (I). It is noted that while the mean values for the Cl and Br bonds are longer than those found in the "stair"-type

	manufrad va		in a farmant			1				
Compound	Cryst. cl. Snace ar	a [pm]	α [°] β [°]	Chromo-	-	M-L	M-M [pm] M T M 1º1		L-M-L	Ref.
	Z		[。] ~			[md]	[.]] M-M-Ju [.]		[.]	
[Ag ^I (Me ₃ apr)(NO ₃)] ₂	m C2/c	1831.9(6) 1244.0(4)	119.83(2)	AgO4	no ^b	221.8(4) 223.5(3)	280.0(2) 92.1(2)	0,µO ^b	87.7(2,8.5) 153.6(2)	341 <i>a</i>
	4	1047.9(2)			0°NO	258.8(5) 249.9(7)	87.9(2)	0,0	118.0(2)	
[Ag ^I (PhNCH ₂ CO ₂)(ClO ₄)] ₂	E C C C C C C C C C C C C C C C C C C C	536.6(1)	00 54/7)	AgO4		221.1(6)	281.4(2) 06.0(7)	0ή,0	100.8(3,7.2)	356
	2=1/2	1304.1(4)				244.6(7)	83.1(2)	0,0	92.9(3)	
[Ag ¹ (Me ₃ aca)(H ₂ O)] ₂ .	E	565.9(1)		AgO4	on o o	224.1(3)	289.8(1)	0ή,0	85.3(1,1)	356
(NU ₃)2	P2 ₁ /c 2	1581.3(2) 1154.9(2)	98.10		D ^{II}	233.4(3) 249.7(3)	96.0(1) 84.0(1)		115.8(1) 154.7(1)	
	ł	(1)1101		0-4	H_2O	255.4(3)		0,0	110.6(1)	
[Ag'(pypr)(NU3)]2	ш C2/c	2943(2) 537.1(3)	107.83(1)	AgU4	n on	219.4(4) 221.6(4)	290.1(2) 98.4(2)	0,40	102.2(1,0.2) 161.0(1)	341 <i>a</i>
	4	1381.3(6)				255.2(4)	81.6(2)	0,0	99.6(2)	
[Ag ^I (pycac)]H ₂ O	E	1223.3(6)		AgO ₄	02100	232.1(5) 232.1(5,37)	312.4	0η0	82.7(2,4.5)	357
	$P2_{1}/c$	504.9(1)	94.96(4)		Оц	237.4(5)	78.3(1)	, (133.3(2)	
A ^{dJ} /PO ₂ (OEt).1	4 ç	1441.8(7) 2010/1)		ΔαΩ.	C	(0)/07	177.1(2)	n'n	128.9(2)	258
((1170)70 r) 90	Pccn	1435(4)		M504	>	230.3(5)			130.4(3)	
[Ag ¹ {NC(CH ₂) ₄ CN} ₂]ClO ₄	tg	907(3)	1	AgN4	z	240.7(-,0) 228(3)			110.1(5,2.1)	359
	$P42_{1c}$ 2	- 1027(4)								
[Ag ^I {S ₃ (CN) ₂ } ₂]AsF ₆	tg DA-/mnm	1051.0(5)	I	AgN4	z	228.8(11,14)			109.5(5,7.0)	360
	r +2/ 111111 4	- 1527.0(2)								
$[Ag^{I}(S_{4}(CN)_{2})_{2}]AsF_{6}$	tg P4	838.1(2)	1	AgN4	z	228.8(7,0)			not given	360
[Ag ^l (dmb),]PF,	1 0r	666.1(2) 930.3(3)		AgC.	C	not given	496 4(1)		not eiven	361
(at 183 K)	$\mathbf{P2_{1}2_{1}2_{1}}$	1410.6(1) 2226.5(1)		† 0)				0	4 2 2

Table 17 Structural data for polynuclear silver compounds, coordination number four^a

SILVER COMPOUNDS

Table 17 Continued										
$[Ag^{I}(C_{10}H_{12})(SO_{3}CF_{3})]$	т п)./д	1017.7(9) 976 3/4)	91 20(6)	AgC ₄	C	241			55.6(1) 71.2(1)	362
	4 4 4	1322.1(9)	(0)07:11	AgC4O2	0	231-237			131.2(1)	676
[Ag (~12m16)(3~3~5)]	$P2_{1}2_{1}2_{1}$	999.1(4)			، ر	147			80.7(3)	700
$[Ag^{I}(C_{14}H_{20})(SO_{3}CF_{3})]$	or	1673.1(8) 920.6(4)		AgC402 AgC4	ວບ	231-237 241		ပ် ပိုပ်	138.8(3) not given	362
	Pna2 ₁ 4	1041.8(5) 1855.8(9)		APC.0,	С	231-237		00	82.3(1) 146.5(1)	
(NEt ₄)[Ag ^I ₂ Cl ₃]	or Pnma	2077.3(5)		AgC14		252.6(2,16) 271 8(2 6)	343.4(2,86) 80.201 6 5%) Ĵ		363
,	12	1668.3(3)				(0,1-),0.1	109.5(7,13.4)			
(NMe ₄)[Ag ^t Cl ₂] (at 170 K)	or Immm	882.5(3) 1452.6(4)		AgCl ₄	D1	260.9(1,10)	328.5(1,148) 78.1(1,3.9)			364
[Ag ^f (qu)C]]0.25(qu)	4 8 C	657.0(2) 3050.8(5) 721.6(1)	12711 661	AgCl ₄	μ₃CI	261.5(4,15)	109.5(1,3.8) 344.9(3,319) 05.172.200			365
	4	2269.8(5)	(1)11.221	AgN ₂ Cl ₂	N µ3CI	228(1,1) 272.9(4,5)	(0.c.(c))ce (05.7(1,19.3)	z Ú Z Ú Z	125.0(5) 109.8(1,14.8)	
Ag ¹ ₂ (PhCS ₂) ₂	E	782.3(7) 632.4(7) 1470 7/102	95.18(9)	AgS ₄			289.0	N,C	100.0(3,/./)	366
β-Ag ^I (Et ₂ tsc)	CZ/c	972.6(2)	104.79(3)	AgS ₄	S LLS	253.6(3,25) 269.8(3,40)	313.3(2,302) 84.5(1,25.9)		65.5(1,1.1) 116.1(1,13.6)	367
[Ag ^I ₂ (htcod)(pic)](picH)	$m_{P2_1/c}$	1457.9(7) 1457.9(7) 1603.0(5)	110.67(3)	AgS ₄	s µS	253.2(2) 253.2(2,93) 261.7(2,54)	347.9(2) $76.88(3)^d$ 81.33(4)	SµS s s	93.2(1,8.9) 132.4(1,2.9)	368 <i>a</i>
	t	(0)(006(1		AgS4O	ы S S U	248.1(3) 254.9(1,9) 289.0(2,115)	(+)22.19	ς, S,μS S,S μS,O	95.0(1,15.9) 132.74(5) 82.0(1,8) 92.25(7)	
(NH4)[Ag ^I (SCN) ₂]	m P2 ₁ /n 4	402 2386 723	96.08	AgS4	S	247.4(20))	134.99(7) not given	368b

148

Table 17 Continued

Table 17 Continued										
(C ₁₈ H ₂₄ N ₃ O ₃)[Ag ¹ ₅ Br ₈]	Ħ	2884(1)		AgBr ₄	μBr	271.0(7,43)	327.8(6,198)			369
	C2/c 8	635.0(2) 3648(1)	108.25(3)		μ₃Br	2/1.8(7,21)	84.5(2,33.1) 109.5(2,8.7)			
(NMe4)[Ag ¹ 2Br3]	or Pnma	1703.6(3) 703.5(1)		AgBr4	μBr μ₄Br	262.5(2,13) 289.8(2,14)	337.1(3,293) 83.5(1,28.6) 100.6(8.12.7)			370
(NEt4)[Ag ¹ 2Br3]	er Pnma	2116.1(7) 2116.1(7) 1220.7(3)		AgBr4	μBr μ₄Br	263.6(2,6) 280.3(2,41)	$77.1(1,7.5)^{e}$			365a
(NMe4)[Ag ¹ (Se ₅)]	ະ E ດີ ເ	1/20.6(4) 1135.0(2) 1876.4(3)	124.59(1)	AgSe4	Se µSe	270.2(2,54) 265.2(3,19)	378.6(4) 91.11(7) 115.40(7)	Se,Se Se,µSe	94.03(7) 111.1(1,11.2)	263
(NEt4)[Ag ¹ (Se ₅)]	+ EΩ 4	1135.0(2) 1876.4(3)	124.59(1)	AgSe4	Se µSe	270.2(2,54) 265.2(3,19)	(1)04-011			263
(NMe4)[Ag ¹ 2]	or Immm	922.8(3) 1535.3(6)		Agl4	щ	278.1(3,25)	not given			371
$Sr[Ag^{I}_{2}]_{4}] \cdot 8H_{2}O$	4 tg 1422	089.9(3) 1286(3) -		Agl4	Ы	287.9(2)	109. /(-, 10.4) 278(1)		not given	372
(NH4) ₂ [Ag ^I] ₃]	د or Pbnm	2120(2) 2120(2) 1084(1)		Agl4	ا ليا	284.6(3,19) 285.9(2)	not given 105.86(6)	1,µ1 1,1	105.86(6) 110.7(1,1.1)	373
(NMe4)[Ag ¹ 2l3]	Pnam	1776.0(7) 1007.7(4)		Agl4	ալ µ41	279.4(2,14) 296.6(2)	not given 76.8(1,15.0)			373
(NMe4)[Ag ^I ₂ l ₃]	4 or Pnam	(2)1.047 (1777(1) (1007(3) (2)7(3)		Agl4	μl μ ₄]	280(-,3) 296(-,4)	107.1(1,10.0) 303 not given 100 71_ 10 4)			374
(NBu4)[Ag ^I 3l4]	m P2 ₁ /c	945(1) 1577(2) 1888(7)	101.08(15)	Agl4	Цц Iєц	276.7(8,5) 284.6(8,63) 303.2(8.77)	334.2(9,329) 59.2(2,1.6) 112.002.27.3)			375
(PPh ₄)[Ag ¹ ₃ l ₄]	m P2 ₁ /c 4	1338.0(5) 1338.0(5) 2653.6(5) 850.4(4)	108.09(4)	Agl4		279.9(2,3) 287.5(2,97) 284.7(7,18)	322.7(3,136) $67.8(6,6.0)^{g}$ 107 3(1 1 3)			179
(AsPh ₄)[Ag ^I ₃ l ₄]	m P2 ₁ /c 4	1344.8(7) 2672.3(4) 854.6(4	107.99(4)	Agl4		280.3(4,5) 287.8(4,88) 294.7(4,17)	324.8(5,133) $68.2(1,6.0)^{h}$ 107.1(1,1.5)			179

SILVER COMPOUNDS

Downloaded At: 16:44 23 January 2011

1	50	
1	50	

C.E. HOLLOWAY et al.

(AsPh ₃ Me)[Ag ¹ ₃ l ₄]	m P2 ₁ /c 4	1278.3(4) 2580(1) 838.8(7)	108.36(5)	Agl ₄ (2x) _n	ы] µ31	281.2(2,12) 289.4(2,57) 291.7(2,1)	66.5(1,5.0) [/] 109 5(1 8 8)			376
				Agl4	u31	282.0(2,12)		1,1	108.8(1,18.2)	
(AsPh ₃ Me)[Ag ¹ ₃ l ₃ Cl]	m P2 ₁ /c 4	1244.8(2) 2533.9(6) 837.7(1)	109.96(1)	Agl ₃ Cl (2x) _n		262.3(9,32) 262.3(9,32) 286.8(4,57) 288.7(4,57)	67.0(1,2.5)	l,I I,CI	109.9(1,4.3) 109.0(2,11.1)	376
	r	(1)7.100		Agl4	ц4 Ц3]	280.6(4,15) 280.6(4,15) 203.3(4.10)		1,1	108.6(1,17.6)	
(AsPh ₃ Me)[Ag ¹ ₃ l ₃ Br]	$\mathbf{P2_1/c}$	1255.1(3) 2563.1(9) 830.020	108.75(2)	Agl ₃ Br (2x) _n	н4 н31 г. -	273.3(4,17) 271.6(2,17) 287.7(2,56)	66.6(1,2.7) ^k	l,l I,Br	110.3(1,2.4) 108.7(1,9.8)	376
	,	17)0.000		Agl4	н4 15-1 1-1	281.5(2,14)		1,1	108.7(1,17.8)	
(TeEt ₃)[Ag ¹ 41 ₅]	m P2 ₁ /c	1233.4(5) 2131.5(7)	104.0(3)	Agl4	н4 µ3 µ4]	285.4(4,137) 285.4(4,137) 292.0(3,110)	335.8(4,2.18) $70.0(1,4.6)^{\prime}$			377
(pip)[Ag4l6](dmso)4	- 14 -	1296(2) 1154(2)	93.8(2) 100.7(3)	Agl4	μ _n l	287(2,9)	110.2(1,12.7) 327 not given			378
(pip)[Ag ₁₀ 1 ₁₂](dmf) ₄	n P2 ₁ /c	654(1) 1452(7) 2506(9)	104.2(3) 100.3(4)	Agl4	μ _n l	287(1,13)	109.4(2,5.9) 325(2,10) not given			379
(C9H24N2)2[Ag21l25]	с С2/с 4	784(4) 2246(2) 1297(2) 2050(2)	104.15(5)	Agl4	μ _n l	285(-,46)	109.2(3,14.0)			380
$(C_{11}H_{30}N_3)_3[Ag_{44}I_{53}]$	в + С <i>3/с</i>	(2)%202 (1369(2) (369(2)	108 7175)	Agl4	$\mu_{n}l$	287(9,49)				381
(pyH)[Ag ^I ₅ l ₆] ^m	4 or D6/mcc	2223(2) 1703(2)		Agl ₅ Agl4	μ _n l μ _n l	322(6,43) 282(1,17)				382
Ag ¹ 2(PhCO ₂) ₂ (py) ₂ ⁿ	2 m P2 ₁ / <i>c</i>	743(1) 2433.7(6) 573.3(1) 1028.7(6)	110.54(2)	Agl ₆ AgO ₃ N	hO NH	314.0(1) 237(1) 226(1,3) 250(1)	285.6(2) 96.3(4)	0,0	83.7(3) 114.3(4) 141.6(4)	383
				AgO ₃ N	ros	233(1) 229(1,2) 253(1)	290.2(2) 94.0(4)	x 0 0 0	101.2(5,11.4) 86.0(4) 113.2(3) 135.5(5) 103.2(4,13.6)	

Downloaded At: 16:44 23 January 2011

Table 17 Continued

Table 17 Continued	ł	:								
[Ag ^I (pef)(H ₂ O)]3H ₂ O	tr PT 2	871.5(1) 988.5(1) 1381.2(1)	69.17(1) 67.54(1) 84.69(1)	AgO ₃ N	$^{ m N}_{ m OO}_{ m H_2O}$	243.1(3) 230.7(3,22) 245.4(4)	290.1(1)	0,0 H ₂ 0,0 N 0,N	140.8(2) 95.4(1,9.5) 108.1(2,10.7) 93.8(7)	384
Ag ¹ ₃ (NSO ₂) ₃ · 3H ₂ O	trg P31c 2	1056.3(5) 		AgO ₃ N	хo	237.6(5,52) 250.0(6,17) 266.0(6)	303.2(1) .	N,0211	not given	385
Ag ^I (Mecy)(NO ₃)	2 PI	1047.4(3) 1114.1(3) 364.2(1)	97.33(2) 95.82(2) 76.76(2)	AgO ₃ N	zood	222.5(2) 236.7(2) 256.4(3)	350.6(1,136)	0,0 0,N	95.1(2) 160 136.2(2)	386
Ag ¹ (pta)	or Pccn 8	2677.2(8) 1047.9(3) 600.7(1)		AgO ₃ S	s NO	223.0(4) 223.0(4) 248.1(3,27) 251.3(2)	342.5(1) not given 79.0(1)	Ο,μΟ μΟ,S	87.9(1) 133.3(1) 75.2(1) 118.7(1)	387
Ag ^l (PPh ₃)(NO ₃)	m P2 ₁ /c	1065.9(2) 1855.8(4) 904.5(1)	100.39(1)	AgO ₃ P	d 0	236.9(2) 240.0(7,38) 262.8(7)		0,S 0,0	146.6(1) 48.3(2,1.4) 89.1(2,7.1) 110 9/7 0 0)	388
Ag ¹ 2(dpae)(NO ₃) ₂	т В2 ₁ /с 4	1994.2(20) 815.9(5) 1806.5(23)	109.8(1)	AgO ₃ As	0 As	232.8(7) 233(3) 256(3.3) 244.4(6)		0,0 0,As	50.6(8) 81.4(9,6) 103.9(7) 125.7(7.2.1)	103
				AgO ₄ As	0 As	247(3,1) 268(3,5) 250.2(6)		0,0 0,As	47.1- 155.5(1) 105.2(7,8.7)	
Ag ^I (C ₁₀ H ₉ N ₄ O ₂ S)	т Р2 ₁ /с А	617.2(5) 960.5(8) 203322)	96.60(8)	AgN ₃ O	zc	224(1,0) 245(1) 254(1)	291.6(2)	N,N N,N	1.34.2(9) 106.5(2,7.2) 80(1,6) 138(1)	389
Ag ^I (C ₁₀ H ₉ N ₄ O ₂ S)	т Р2 ₁ /с 4	2030(2) 617.3(2) 960.0(5) 2030(2)	96.22(8)	AgN ₃ O	oz o	224.1(6,36) 224.1(6,36) 245.9(6) 257.1(6)	291.6(1)	N,N N,O	126(1) 106.5(2,7.2) 137.6(2) 78.9(2,5.2)	390
Ag ^I {C(CN) ₂ }NO	or Pbca 8	1172.9(14) 1029.9(4) 786.8(5)		AgN ₃ O	z o	216(3) 233(3,3) 243(3)		N,N N,O	128.2(1) 103.2(1.0,8.1) 128.2(1.5) 107.7(2.0,10.2)	391

Downloaded At: 16:44 23 January 2011

Continue	
17	
-	

Table 17 Continued										
Ag ^l (qu) ₂ (SCN)	or $P2_12_12_1$	1597.7(4) 1354.4(4)		AgN ₃ S	quN SCN	236.3(4,2) 233.2(5)			119.6(1)	354
Ag ¹ ₂ (tmb) ₃ (ClO ₄) ₂	+ PI	895.1(5) 895.1(5) 901.8(9)	93.54(7) 90.73(5) 115.86(6)	AgC ₃ O	c C O ₃ CIO	249.5(1) 213.9(12,23) 273.3(13)		0 0 0	118.7(4,9.9) 96.9(4,8.6)	392
Ag ^I (C ₃ H ₆ S ₃) ₂ (NO ₃)	$\frac{1}{Pca2_1}$	1252(1) 911(1) 1283(1)	(0)00.011	AgS ₃ O	s 0	255(2,9) 271(5)		S,S S,O	118.2(5,17.8) 97.8(1.1,8.4)	393
[Ag ^l (C ₃ H ₆ S ₃)(NO ₃)]H ₂ O	+ or Pacb 8	1145(3) 963(3) 964(4)		AgS ₃ O	S O ₂ NO	262(1,7) 248(2)		S,S S,O	119.3(2,28.9) 94.8(5,16.6)	394
Ag ^I (C ₃ H ₆ S ₃)(NO ₃)	m P2 ₁ /n	2381(6) 1283(4) 583(3)	97.8(3)	AgS ₃ O	s O	265(2,5) 279(5)		S,S S,O	118.0(2,13.2) 81.4(1.1,6.4)	394
	þ	(2)222		AgO ₃ S ₂	so	265(2,2) 267(6 11)				
[Ag ^I (C ₃ H ₆ S ₃)(H ₂ O)] [.] CIO ₄	m P2 ₁ /m	602(2) 1082(3) 1624(4)	80.4(3)	AgS ₃ O	$_{\rm H_2O}^{\rm S}$	258(1,6) 248(2)		S,S S,O	113.7(3,1.8) 104.1(5,22.8)	394
NaAg ^I S ₂ O ₃ (H ₂ O)	► Pc	778(1) 907(1) 771(1)	96.3(2)	AgS ₃ O	$_{\rm H_2O}^{\rm S}$	255(1,10) 269(2,7)		S,S S,O	115.3(5,11.6) 92.2(8,13.3)	395
[Ag ^I (C ₉ H ₁₈ S ₃) (CF ₃ SO ₃)]·MeCN	$\mathbf{P2}_{1}2_{1}2_{1}$	860.1(1) 1422.4(3)		AgS ₃ O	s (247.0(2,7) 262.1(2)		S,S	104.5(1,5.9) 140.92(6)	96
${Ag^{I}_{2}(SCN)_{4}} \\ C_{18}H_{36}N_{4}$	4 m 72 ₁ /n	1009.8(2) 1203.2(3) 728.8(4) 1603 3(4)	90.44(4)	AgS ₃ N	0Zs	248.3(0) 230.7(5) 250.1(1,25) 287.1(1)		S,S S	98.0(2,8.0) 115.0(1,7.9)0 79.5(4)	396
Ag ¹ (tsc) ₂ (SCN)	or Pna2 ₁ 4	1144(1) 1496(3) 657(1)		AgS ₃ N	S NCS	246(1,3) 246(1,3) 299(1) 274(3)			not given	397
p-Ag ^I (SCN)	or Pmnn 4	408.3(1) 704.3(1) 1121.9(1)		AgS ₃ N	sz	266.4(15,23) 200(5)	not given 116.3(4,15.1)	µS,S S,N	100.0(4,1.2) 98.4(1,12.0)	398
Ag ^l (tu) ₂ Cl	m P2,/ <i>a</i> 8	3670(4) 824(1) 587(1)	92.50(15)	AgS ₃ CI	CI Pr CI Pr S	247(5,4) 253.6(5,52) 294.5(5,91)	313.4(2) 77.3(2) ^{o} 110.3(11,3)	μS,S μS,Cl S,Cl	112.0(1,16.5) 102.0(1,4.1) 94.9(1,10.7)	399

152

C.E. HOLLOWAY et al.

Table 17 Continued										
Ag ¹ ₂ (tsc) ₃ Br ₂	н Е	857(5) 2227(4)	92,5(3)	AgS ₃ Br	S IS	237(-,1) 278(- 32)	320		not given	400
	5-1	430(1)			Ъ	267(-,1)				
Ag ¹ ₂ (tsc) ₃ Br ₂	8	431.9(1)		AgS ₃ Br	ഗ്	243.7(9,1)	325.2(7)	S,µS	100.9(3,1.2)	194
	1 71	2247(4) 870.7(4)	96.62(4)		ST	252.7(9,2) 306.2(8,45)	/2.1(3,8.0)			
		× *			Br	267.0(6,37)				
Ag ^I (C ₁₂ H ₂₄ S ₆)Br	ᄇ	1035.9(1)	115.72(1)	AgS ₃ Br	ŝ	257.4(1,62)		S,S	85.7(1)	96
	P1	1042.0(1) 1131.1(2)	115.56(1) 82.62(1)		Br	263.6(1)		S.Br	122.4(1,5.5) 107.9(1,2.3)	
Ag ^I (tsc)Cl	or	1193(1)		AgS ₃ Cl	S	250(1,2)		S,S	98.5(2,2.8)	401
	$P2_12_12_1$	2486(5)			Sit	277(1)		ξ	132.3(3)	
	ø	401.8(0)			: د ر	200(I)		ەر ە ئ	(0.0,0)114 5(0)	
				AB22U2	30	270(1,5)		C,C	98.0(3)	
-								S,CI	110.8(2,8.7)	
Ag ^l (qu)Cl	m P2 ₁ /c	414.4(6) 1548(5)	99.5(1)	AgCl ₃ N	н3СI н	220(8) 271(2,7)	345(1,31) 78.4(6,8.2)	CI'N	117(2,7)	266
	4	1559(3)					101.4(7,8.4)			
Ag ^I (Me ₃ py)Cl	Е	416.3(4)	(0) 01 (0)	AgCl ₃ N	z	227(3)	347.5(5,241)	CI,N	116.8(7,3.6)	266
	F 2 ₁ / <i>c</i>	1542.0(10) 1435.1(4)	(8)16.26		µ3CI	204(1,10)	81.5(3,0.8)			
Ag ^l (py)Br	· E	423.5(2)		AgBr ₃ N	z	228.6(6)	316.4(1,60)	Br,N	100.1(2,1.0)	266
	P2 ₁ /n 4	1445.2(5) 923.1(4)	93.51(3)		μ ₃ Br	273.9(1,112)	70.0(1,2.5) 107.8(1.4.7)		132.2(2)	
Ag ^I (3-Mepy)Br	or .	1471.8(4)		AgBr ₃ N	z	230.5(8)		Br,N	100.1(2,5)	197
	Pccn 8	1440.7(4)			μ₃Βr	274.9(1,73)	66.80(4)		129.8(2)	
Ag ^l (4-Mepy)Br	- E	1028.6(5)		AgBr ₃ N	z	228(3)	316.5(6,3)	Br,N	102.9(9,4.7)	197
	$P2_1/n$	1806.6(9)	104.31(5)		µ3Br	274.1(6,120)	69.6(1,6)		119.4(8)	
Ag ^I (qu)Br	- 8	421.0(4)		AgBr ₄ N	Z	209(7)	345(1,34)	Br,N	116(2,5)	266
	$P2_{1/c}$	1556(2)	100.22(9)) 	μ ₃ Br	276(2,4)	77.4(4,8.9)		•	
A -LA C - D-AD-	4	1203(2)		A -D- N	X	(1)166	101.8(5,9.7)	D. N	115 513 0 6)	336
AB (ME3F)DI	ш Р)./г	1583(1)	00 97(7)	VIE IOLSKY	u.Br	(1)172 777 78)	200.7(2,240) 80 3(1 6 8)	N,10	(0.0,0)0.011	007
	4	1374(1)			1		101.8(1,8.8)			
Ag ^l (pip)l	or	2022.0(40)		Agl ₃ N	z	232.9(15)	303.2(2,63)	I,N	107.1(1,15.5)	402
	Pcna 8	822.6(20) 1024.0(30)			μ ₃ Ι	291.0(2,57)	62.3(5,1.2) 111.3(7,1.6)			

Downloaded At: 16:44 23 January 2011

., Č ţ

Table 17 Continued										
Ag ^I (Me ₃ py)l	m P2 ₁ /c 4	451.2(5) 1619(3) 1366(4)	91.8(2)	Agl ₃ N	р И И	230(1) 288.1(3,87)	308.5(4,79) 64.8(1,3.3) 112.7(1.2.5)	I,N	106.0(3,5.7)	266
Ag ^I (3-Mepy)l	m P2 ₁ /n	1957(2) 463.3(3) 935 5(7)	90.85(7)	Agl ₃ N	и ₃ 1 И	232.4(7) 285.8(2,37)	309.0(2) 65.33(3) 112.9(1.3.7)	I,N	105.7(2,2.4)	268
Ag ^I (py)l	m P2 ₁ /n 8	951.8(4) 1705.6(5) 078.8(3)	106.37(3)	Agl ₃ N	N µ ₃ l	239(2) 285.4(3,60)	312.4(4,118) 66.1(1,2.0) 112.4(1,6.2)	I,N	106.3(1,7.8)	266
Ag ^I (2-Mepy)l	or P2 ₁ 2 ₁ 21	1079.7(9) 1079.7(9) 457.0(4)		Agl ₃ N	N µ ₃ l	235.2(9) 287.3(2,23)	320.0(3) 67.89(4) 109.7(1.4.0)	I,N	108.8(3,9.3)	268
Ag ^l (qu)l	m P2 ₁ /n	1296.4(9) 1684(2) 445.4(4)	97.10(7)	Agl ₃ N	N Igu	232(2) 288.6(3,89)	323.1(3,171) 72.4(1) 109.1(1,8.0)	I,N	109.8(3,20.0)	268
Ag ^I (mor)l	- = C -	452.8(10)	95.9(1)	Agl ₃ N	N µ ₃ l	237.6(24) 285.9(6,49)	330.4(9) 70.2(2,1) 108 5(7 2 5)	I,N	110.0(6,20.8)	403
Ag ^I (dea)Cl	+ or 1ba2 8	1948.2(4) 1948.2(4) 1221.8(3) 643 2(7)		AgCl ₃ N	N H3CI	228(3) 263(2,3) 284(4)	$(2.2)^{a}$	CI,N	81(2) 126(1,2)	266
Ag ^I (dea)Br	or Iba2 8	1902.2(6) 1206.7(4) 662.8(7)		AgBr ₃ N	N µ₃Br	235(4) 273.1(8,3) 273.5(14)	$310.1(9)^{q}$ 69.2(2) 108 4(3 4 3)	Br,N	110.6(9,8.6)	266
Ag ^I (dea)l	or Ccca	3843.0(9) 2245.9(5) 745.0(7)		Agl ₃ N	N µ3Ì	237(2) 237(2) 279.5(4) 291.3(5.14)	308.7(5) ⁷ 64.0(1) 112 5(1 11 4)	I,N	106.0(6,1.2)	266
Ag ¹ 4(hmta)Cl4	or Pnam 8	859.4(1) 956.7(1) 1640.3(2)		AgCl ₃ N	N D D D D D D D D D D D D	238.0(4,31) 270.9(1,131) 280.7(1,130)	72.7(1,3.3) 104.6(2.43.1)	CI,N	86.2(2,2.1) 163.4(2)	404
)			AgCl ₂ N	e Di	238.0(4) 255.6(1.11)		C,Cl Cl,Cl	105.5(2,1.5) 113.1(2.2.0)	
α-Ag ^l (pysa)	or Pbca 8	1433(1) 1025(1) 1713(7)		AgO ₂ N ₂	loz	291(1,12) 228(1,3)		o z z o z c	141(1) 163(1) 55-121(1)	405
þ-Ag ^l (pysa)	m P2 ₁ /c	751.8(7) 671.3(6) 2619(2)	103.1(1)	AgO ₂ N ₂	oz	290(1,7) 218(1,2)		0 X Q	134(1) 175(1) 55-125(1)	406

Downloaded At: 16:44 23 January 2011

154

Continued	
Table 17	

	not given 400			418	0,0 48.8(1) 327 C,C, 144.9(2) 0,C 105.6(2.14.5)	0,0 84.6(6) 408 C,C 34.1(6) 0.C 122.3(2.2)	0,0 125.0(7) C,C 161.7(8) 0,C 95.8(5)	0,0 140.05) 410 C,C 126.0 D,C 99.214.103)	411	0,0 70(2) 412 C,C 35(2) 0,C 125(2,1) 157(2,3)	0,0 81(1) C,C 75-125(1) 0,C 92-151(2)
232.2(4,9)	237.9(10,100) 274.3(10,28) 219.6(11.102)	256.3(10,114) 224.4(11) 267.1(13)	231.0(11,29) 272.7(10,36)	247.7(4,42) 239.0(2,34)	258.3(5,64) 210.7(5,16)	233(2) 235(2)	249(1) 245(2) 261(2)	236(1) 255(1) 272(1)	237(1) 262(1) 233(1,1) 239(1,2) 270(1,8)	232(1,1) 231(4) 248(4) 232(6,2)	239(6) 256(6,3) 246(4,4)
ΣC	002	oU	Zo	οz	00	00	ပပ	ပပ	0 00 0	000	ပပ
AgU ₂ N ₂	AgO ₂ N ₂	AgO ₃ N ₂	AgN ₃ O ₂	AgO ₂ N ₂	AgO_2C_2	AgO ₂ C ₂	AgO_2C_2	AgO ₂ C ₂	AgO ₂ C ₂ AgO ₄ C ₂	AgO ₂ C ₂	AgC ₄ O ₂
96.48(1) 96.48(1) 114.19(1)	116.69(5)							103.32(2)	103.10(3)	93.0(3)	
902.0(1) 1006.5(2) 1137.4(1)	2957(20) 781.8(8) 1958.1(14)			691.8(1) 1257.6(2) 1342.2(2)	859.0(7) 1512.5(2) 2107.5(3)	1767.0(3) 606.5(2) 1013.5(14)	1659.4(8) 886.1(5) 579.5(3)	776.3(1) 1977.1(4)	1755.4(9) 690.8(4) 1103.1(5)	1217(2) 1934(2) 655(2)	
р <u>т</u> 2 Р <u>т</u>	п С2/с 32	1		ог Р2 ₁ 2 ₁ 2 ₁ 4	or Pbca 8	o Cmcm 4	or $P2_12_12_1$	- C2/c 4	m P2 ₁ /c 4	m P2 ₁ /n 4	
Ag ^l (Bu ^t dab)(CF ₃ SO ₃)	Ag ^l (CN) ₂ (NO ₂)}			Ag ^I (ttof)(NO ₃)	Ag ^l (tmb)(NO ₃)	Ag ¹ ₂ (C ₇ H ₈)(NO ₃) ₂	Ag ^I (1,2-Me ₂ C ₆ H ₄) ₂ . (ClO ₄)	[Ag ^I (p-MeOacp) ₂]BF ₄	Ag ^l (C ₇ H ₆) ₂ (NO ₃)	Ag ¹ ₂ (C ₁₂ H ₁₈)(NO ₃) ₂	
Table 17 Continued											
---	--	---	---	---	---	--	--	--	--	---	
Ag ¹ (2-Mepy)(SCN)	or Pn2 ₁ a	1835.0(5) 1120.9(3)		AgN ₂ S ₂	N SCN	234(1) 227(1) 250 5(2 43)	107.3(1)		not given	354	
Ag ^I (3-Mepy)(SCN)	4 or Pbca 8	410.0(1) 1805.5(8) 1138.5(5) 840.440		AgN ₂ S ₂	a z s	233.1(5) 233.1(5) 229.3(5) 229.7(7) 10)	132.32(7)		not given	354	
Ag ^l (pip) ₂ Cl	o C2/c 8	642.2(7) 2076(4) 642.2(7) 2069(2)	96.9(1)	AgN ₂ Cl ₂	az D	236.6(10,19) 236.6(10,19) 252.4(3) 266.7(3)	102.62(9)	Z Z Z Z	106.9(3) 100.5(3,1.5) 119.2(7,1,2)	413	
[Ag ^I (adpo)(MeCN) ₂]SbF ₆ (at 203 K)	or P2 ₁ 2 ₁ 2 ₁	736.0(2) 1464.4(3) 2784.4(4)		AgN_2P_2	z d	243.4(5) 243.4(5) 257.4(5)	(a) C. 101	P,P	106.1(1)	414	
[Ag ^I (C ₁₄ H ₂₈ S ₂)]CIO ₄	or P2 ₁ 2 ₁ 2 ₁	822.9(3) 1064.5(3) 1301 7(3)		AgC ₂ S ₂	N C	254.0(15,47) 252.3(3,23) 252.3(3,23)		S, C C S, C	30.2(6) 149.3(3) 89 8(4 11 7)	149	
[Ag ^I (C ₁₆ H ₂₂ N ₄ S ₂)]· (CF ₃ SO ₂)·MeOH	or P2 ₁ 2 ₁ 2 ₁	1133.9(1) 1133.9(1) 1312.2(1) 1745.1(1)		AgN ₂ OS	ZOS	229.9(5,80) 256.8(4) 250.9(2)		Z O Z Z Z Z	80.7(2,10.9) 106.7(1)	415	
Ag ^I (bdtp)(NO ₃)	m P2 ₁ /n	1871.0(4) 882.8(2) 1116.2(5)	103.13(3)	AgN2OS	N O ₂ NO MS	221.6(4) 248.3(5) 250.3(5) 257.1(2)		X,X X,X X,X X,X X,X X,X X,X X,X X,X X,X	137.3(1) 110.6(1) 118.8(2) 100.7(2,23.0) 77.1(1,4.4) 147.7(1,8.4)	416	
Ag ¹ (PPh ₃)(SCN)	т Р2 ₁ /с 4	632(2) 1400(5) 1824(7)	114.0(1)	AgS ₂ NP	P SCN	248(3) 210(1) 286(2,3)	86.40 93.30	S, O S, P N, P N, P	88.2(1) 108.0 104.5 130.0	417	
Ag ¹ (tosco)(NO ₃); m, P2 ₁ /n 1313(3), $b = 2370(1)$, $c = 1313(3)$, $b = 2370(1)$, $c = 1275$ [AgS ₅ O]-420 Ag ¹ (C ₃ H ₆ S ₃)(1 4; $a = 993.9(4)$, $b = 1275$ pm; $\beta = 96.27(2)$ ° 422 Ag ¹ (5 c = 2698.6(5) pm.424 Ag ¹ (5 c = 208.6(5) pm.424 Ag ¹ (5 c = 208.6(5) pm.424 Ag ¹ (5) c = 120.1(1,1.7)°, /Ag-1-Ag 98.38(6,4.83) and 126.55(6 77.92(6)°, /Ag-1-Ag = 10 crystallographically indepe Ag-Br-Ag = 93.6(3,1)°, 'A	4. 2; $a = 13$ 5. 573(1) pm H ₂ O)BF4; or 1.8(6), $c = 5$ acetylide)(N alfadiminatum un value is ta the coordina the co	773.8(4), $b = 107.00$; $P = 107.00$, $P 2_1 2_1$, 4; (2) $77.6(3) \text{ pm; } [L]O_3); rrh, R3, 1 = 0, (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)$	944.7(4), c 944.7(4), c a = 1072(2), a = 1072(2), a = 794.5(2), a = 794.5(2), a = 794.5(2), a = 100(5), $b = 1first number ina = 100.03(8)a = 100.03(8)a = 133°$, a = 133°, a = 100, a = 133°, a = 130°, a =	= 815.1(3) b_{22}^{22} Ag ¹ (C ₃ H b_{3}^{21} (Ag ¹ (bpy)(S([Ag ¹ (bpy)(S([Ag ¹ (bpy)(S()) pm; $\alpha = 1$ 163.5(6), c n parenthesi n parenthesi (1)°; Ag-CI-/ analysis wa analysis wa 98.3(1,3)°.	pm: $\gamma = 5$ $(53)(NO_3)(3), c = 591$ (5, c)(10, 25b)(2, c)(10, 25b)(2, c)(10, 25b)(2, c)(10, 25b)(2, c)(10, c)(1	$\begin{array}{l} 88.90(4)^{\circ}; \left[AgO_{3} \\ H_{2}O; \ or, \ Peam, \ l \\ (1) \ pm; \left[AgS_{3}O \right] \\ y; \ m, \ P2_{1}/n, \ 4; \ 0, \ 12_{2} \\ y; \ m, \ P2_{1}/n, \ 4; \ 0, \ 12_{2} \\ pm, \ 22^{\circ} \ w_{1} \\ M_{2}E_{1}-M_{2} \\ H_{1}a(N) \\ M_{2}E_{1}-M_{2} \\ H_{2}a(N) \\ H_{2}a(N) \\ H_{1}a(N) \\ H_{2}a(N) \\ H_{1}a(N) \\ H_$	S]. ⁴¹⁹ Ag ¹ (C ₁) S; $a = 1130(2)$ 420 Ag ¹ (CH ₂ - 420 Ag ¹ (CH ₂ - a = 769.5(2), a = 769.5(2), a = 7769.5(2), a = 7769.5(2), a = 7769.5(2), a = 769.5(2), a = 769.5(2), a = 769.5(2), $a = 91(1,1)^{\circ}$.	$f_{4S_3}(NV_{1,b} = 16)$ (1, b = 16) (1, b = 18) (1, b = 18) (1, b = 18) (1, c = 18) (1,	3.3); m, P2,/b, 8. 887(3), $c = 964(2)$ CN)(CIO4); or, P. 46.3(5), $c = 187$ 738.3(2), $b = 982$ 138.3(2), $b = 982$ 137.13(5); $e_{2}E_{2}$ 127.13(5); $e_{2}E_{2}$ 127.13(5); $e_{2}E_{2}$ 127.13(6)°; Ag-Br- 27.36(6)°; Ag-Br- 27.36(5)°; Ag-Br- 3 K, "There are a 405.8(5,4) pn) pm;) $m2_1$, 7.7(5), 7.	

Downloaded At: 16:44 23 January 2011

156

Figure 8

Figure 9

polymers, the mean Ag-I value is almost invariant. The Ag–N distance also increases with the steric effect of the overall AgX_3N chromophore, for example: 228 pm (X = Cl) < 235 pm (Br) < 237 pm (I).

The data in Table 17 show that $Ag_2(tsc)_3Br_2^{194,400}$ and $Ag(Pysa)^{405,406}$ exist in two isomeric forms differing by degree of distortion. In $Ag_2(PhCO_2)_2^{383}$ two crystallographically independent molecules coexist, again differing by degree of distortion. The mean Ag-L distance in the unidentate ligand series increases in the order: 231.6 pm (LN) < 242.5 pm (LP) < 245.2 pm (LS) < 254.1 pm (LO) < 265.9 pm (Br) < 276.8 pm (Cl) < 284.6 pm (I). In the series of bidentate ligands, the distances increase in the following order: 228.5 pm (LN) < 242.3 pm (LO) < 242.8 pm (LC) < 270.2 pm (LSe). The mean Ag-L distance for the NCS ligand is longer when binding *via* the softer atom, with values of 218.3 and 274.7 pm for Ag-NCS and Ag-SCN, respectively.

The mean Ag-X(bridge) distance increases with covalent radius of X as well as the degree of multiplicity of the bridging of X (Table 17A). In general, the mean Ag-L distances found in this series of Ag(I) derivatives are longer than those of Cu(I) derivatives, as might be expected. This series of derivatives is the richest in terms of variety for the Ag(I) complexes. The most common ligand is the soft iodine atom.

7.4. Coordination number five

Structural data for penta-coordinated polynuclear silver(I) compounds are given in Table 18. There are examples with the Ag(I) atom in a trigonal bipyramidal environment.^{426-428,431,442} In the remaining examples, the silver atom is coordinated in an irregular fashion⁹¹ or in a distorted coordination polyhedron, due to the presence of multidentate ligands. Penta-coordinated Ag(I) atoms are found forming chains of differing types of bridges. For example, in Ag(C₁₄H₂₈S₂)(F₃CCO₂)¹⁴⁹ a

Coord. atom/ligand	Covalent	Cu-L [pm]	Ag-L [pm]
account inguine	[pm]	[138 pm]	[153 pm]
LN	75	202.0 204.3 ^a	231.6 228.5 ^{<i>a</i>}
Cl	99	228.6 234.3 ^b 238.5 ^c	276.8 261.0^{b} 271.0^{c}
LS	102	235.6 ^b	269.7 ^b
Br	114	234.3 245.7 ^b 250.8° <i>c</i> 258.5 ^d	265.9 267.2 ^b 275.3 ^c 285.1 ^d
I	133	265.1 ^b 266.8 ^c 271.5 ^d	279.0^{b} 286.1^{c} 294.1^{d}

Table 17A Summary of the mean M(I)-L distances for polynuclear four-coordinated derivatives (Cu(I)-L;⁴² M[covalent radius])

^aBidentate ligands. ^bDoubly bridged atom/ligand. Triply bridged atom/ligand. ^dQuadruply bridged atom/ligand.

Compound	Cryst. cl.	<i>a</i> [pm]	α[°] β[°]	Chromo	-	M-L		L-M-L	Ref.
	Z	<i>c</i> [pm]	γ[°]	phote		[pm]		[°]	
Ag ^I (MeSO ₃) ^c	m	869.86(6)		AgO ₅	O _e ^b	242.5(5)	O _e ,O _e ^b	119.4(2,18.5)	426
	$P2_1/c$	577.76(5)	100.21(3)		O _e	262.7(5,1)	0.0,	90.5(2,21.6)	
	4	826.65(6)			O _a	235.2(5,11)	0,0	162.7(2)	
$Ag^{I}(dmso)_{2}(ClO_{4})$	m	1033.6(1)		AgO ₅	0 _e	249.7(7,8)	$O_{e}O_{e}$	120.0(7,16.6)	427
	$P2_1/n$	1818.8(2)	98.56(1)		O ₃ ClO _e	241.1(29)	O_e, O_a	89.8(5,13.9)	
	4	652.3(1)			0	235.8(7,4)	0,0	158.1(3)	
$Ag_{2}^{I}(SO_{3}(CH_{2})_{4})$	m	869.9(3)		AgO ₅	0	247.5(5,102)	0,0	119.4(2,20.9)	428
SO ₃ }	$P2_1/c$	586.6(1)	91.75(1)	• •	0,	242.3(5,22)	0.0	89.8(2,14.9)	
57	2	894.9(1)					0, 0,	169.4(1)	
$Ag_{2}^{I}(SO_{3}CH_{2}SO_{3})$	or	857.8(3)		AgO ₅	0	243.5(8,78)	u - u	not given	429
	Pnc2	738.7(2)		AgO ₆	0	253.8(8,78)		not given	
	4	995.4(2)		- 0				•	
$Ag^{I}(OPPh_{3})(NO_{3})$	or	1345.2(1)		AgO ₅	0,	233.3(8,72)	O_{e}, O_{e}	49.8(3,8)	430
	$P2_{1}2_{1}2_{1}$	1508.6(2)			μČe	250.8(8,95)	0. 0	120.8(3,25.3)	
	4	865.0(2)			Ph ₃ PO _a	226.1(6)	$O_{e_1}O_{a_2}$	107.0(3,17.0)	
$Ag^{I}(SO_{3}NH_{2})$	or	780.9(2)		AgO₄N	N _e	231.21(8)	0,0	115.6(3)	431
	Pcab	806.7(2)			μÕe	241.8(8,9)	O,N	121.3(3,4.1)	
	8	1168.2(3)			μO _a	253.8(8,54)	O_e, O_a	87.2(3,4.2)	
							O _a ,N _e	95.5(3,14.1)	
							0,0,	167.3(3)	
$Ag^{I}(AsPh_{3})(NO_{3})$	m	1040.5(5)		AgO ₄ As	0	251.1(7,156)	0,0	48.0-146.5(4)	91
	$P2_1/c$	1889.5(12)	98.35(8)		0	282.9(6)	O,As	110.0(3,14.7)	
	4	913.8(6)			As	247.1(2)		141.9(2)	
$Ag_{2}^{I}(C_{11}H_{15}As)$	or	717		AgO ₄ As	0	267(3,22)		not given	438
$(NO_3)_2$	$P2_{1}2_{1}2_{1}$	1016			As	248.8(6)			
	4	2202		AgO ₄ C ₂	0	260(3,25)			
					С	240(5,6)			
$[Ag^{I}(C_{10}H_{10})]$	m	849(2)		AgC ₄ O	0	237(2,5)		not given	432
$(H_2O)]BF_4^d$	$P2_1/c$	1484(3)	103.4(2)		С	250(3,10)		-	
	8	1874(4)							
$[Ag^{I}(C_{11}H_{15}NS_{3})]$	or	861.6(1)		AgS₄N	Ne	237.0(4)	S,S	77.3(1,7)	433
(NO ₃)	Pca2 ₁	1030.3(2)			S.	270.6(2,5)		138.6(1)	
	4	1683.9(2)			μŠe	285.6(1)	S,N	76.5(2,1.1)	
					μSa	249.8(1)		100.0(1)	
Ag ^I (dmpto)	or	634.5(5)		AgO ₃ N ₂	Ö	237.8(11)	0,0	99.1(2,11.0)	434
(dmptoH)	$P2_{1}2_{1}2_{1}$	1401(2)				258.8(11,40)		129.7(2)	
	4	1792(2)			N	227.0(11)	N,N	153.8(2)	
						249.0(11)	O,N	63.2-134.3(2)	
$Ag_{3}^{I}(C_{9}H_{12})(NO_{3})_{3}$	hx	1625.8		AgO_3C_2	0	246.5(11,27)	0,0	98.5(3,13.0)	435
(at 148 K)	R3c				С	239.5(15,16)			
	6	955.6							
$Ag_{4}^{i}(C_{10}H_{8})$	tr_	1187.0(1)	88.93(1)	AgO_3C_2	0	260.5(11,299)	0,0	84.1(3,8.5)	436
$(H_2O)_4(ClO_4)_4$	P1	924.7(1)	96.88(1)		С	261.6(11,17)	C,C	30.6(4,4)	
	1	1112.3(1)	101.21(1)				O,C	73.5-157.7(4)	
$Ag_{4}^{I}(C_{14}H_{10})$	m	2418.9(6)		AgO_3C_2	0	249.0(7,142)	0,0	45.3(2)	437
$(H_2O)(ClO_4)_4$	P2 ₁ /n	932.5(2)	90.35(5)		С	251.3(8,59)		80.2(2,11.0)	
	2	530.4(1)					C,C	31.5(3,1)	
t							0,C	58.4-156.9(3)	
$Ag'(C_{20}H_{18})$	m	1249.5(2)		AgO_3C_2	0	256.7(3)	0,0	50.6(1)	439
(CIO ₄)]	$P2_1/n$	854.6(1)	101.27(1)		~	271.5(4,62)		66.4	
. Luna-e .	?	1619.6(2)			C	248.3(4,125)			
$Ag'(dtl)(NO_3)$	tr	1174.6(1)	90.90(4)	AgO_3S_2	0	not given		not given	440
	Ч Ч	893.1(3)	97.38(3)		S	257.3(-,29)			
	4	2004.1(4)	88.6/(4)						

 Table 18 Structural data for polynuclear silver compounds, coordination number five^a

Table 18 Continued

Ag ^I (hmta)(NO ₃)	or	1383.2(7)		AgN_3O_2	N	238.2(5,47)	N,N	153.8(6)	441
	Pnma	653.5(4)			0	261(1,2)	0,0	88.1-129.7(6)	
	4	1033.7(0)			0	200 0/2 111	N,U	03.2-134.3(0)	
$[Ag'(bqtp)](NO_3)^{\circ}$	m	2/01.1(8)		AgS_3N_2	S.	269.0(2,111)	3,3	112.8(1,4.2)	442
	$P2_1/c$	796.2(1)	110.41(3)		Na	237.7(4,8)		133.6(1)	
	8	2027.0(5)					N,N	148.7(1)	
							N,S	72.9(1,2.7)	
								100.2(1,11.2)	
				AgS_3N_2	S _e	271.4(2,146)	S,S	104.2(1)	
					N,	234.3(4,7)	•	130.1(1)	
							N,N	142.0(1)	
							N,S	72.3(1,1.8)	
								99.8(1,13.7)	
$Ag^{I}(C_{14}H_{28}S_{2})$	m	1019.4(3)		AgC_2S_2O	0	229(2)	C,C	30.8(8)	149
(F_1CCO_2)	$P2_1/b$	1578,4(5)			С	253(3)	S.S	123.2(4)	
52/	4	812.5(4)	95.49(2)		S	258.2(6)	Ċ.S	92.3(6.11.9)	
		(')			μS	263.2(6)	S,O	122.8(6)	

^aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specified in these columns. ^cAg-Ag = 316.3(2) pm. ^dAg-Ag = 240(-,6) pm. ^eThere are two crystallographically independent molecules. ^fAg-S-Ag = 126.4(4)^o.

polymeric chain is developed via S'-Ag-S-Ag' linkages about a two-fold axis, with a five-membered -Ag-S-C(1)-C(2)-C(3)-ring adopting a C(2) envelope conformation (Table 18).

In Ag($OPPh_3$)(NO₃)⁴³⁰ a square-pyramidal arrangement about the Ag(I) atom is built up by a triphenylphosphine oxygen, two oxygen atoms of one nitrate group, and two oxygen atoms of a symmetry related nitrate group.

In colourless $[Ag(C_{11}H_{15}NS_3)](NO_3)$,⁴³³ the Ag(I) atom sits in the cavity of the macrocyclic ligand, coordinating to three S atoms and one N atom, and linked to an adjacent ligand by a sulphur atom, forming a chair configuration. The nitrate group does not interact with the Ag(I) atom. In another derivative⁴³⁴ the Ag(I) atom is coordinated with two organic bidentate ligands of the same asymmetric unit, and with one O atom of a neighbouring molecule to form a chain structure with no Ag-Ag interaction.

The pentacoordinated polynuclear silver(I) compounds utilize uni-, bi_ and multidentate ligands. The mean Ag-L distance of the unidentate ligands are shorter than those of the bidentate ones. For example: 244 pm (uni-) vs 252.5 pm (bidentate: O-donor ligands); and 248 pm (uni-) vs 250 pm (bidentate As ligands).

In the multidentate ligand series, the mean Ag-L distance increases in the order: 238.4 pm (LN) < 247.5 pm (LO) < 250.6 pm (LC) < 263.5 pm (LS). The mean Ag-L(bridge) distance of the multidentate ligands are longer than the terminal bond lengths, and increases with the covalent radius of the bridged atom, 255.9 pm (LO) < 274.8 pm (LS).

Two crystallographically independent molecules are found in one example.⁴⁴² The structure of one such molecule is shown in Figure 10. These two independent molecules are similar to each other except for the degree of distortion (Table 18).

Figure 10

7.5. Coordination numbers six and higher

Structural data for these thirty-two derivatives are gathered in Table 19, with the coordination number of the silver atom varying from six to ten, irregular geometry six coordination being the most common. The soft coordination characteristics of silver(1) are underlined by the structures of the polymers, and as in the previous series (Section 7.4), there are no straightforward ways to classify these. With the exception of two examples^{450,456} where silver is in the oxidation state + 2, all of the other examples have silver in the +1 oxidation state. The Ag-L distances cover a wide range of values, especially for O- and C- donor ligands, the most common in the hexa-coordinate series. The mean bond distances for these two donors in multidentate ligands are 256.0(420,383) pm and 255.4(211,254) pm, respectively. These values are smaller than those found for the hepta- and higher coordinated derivatives (259.8(357,625) pm and 264.3(233,327) pm respectively). All of these are larger than those found in the penta-coordinated derivatives (247.5 and 250.6 pm), as might be expected.

Compound	Cryst. cl. Space gr.	a [pm] b [pm]	α[°] β[°]	Chromo- phore		M-L		L-M-L	Ref.
	Z	<i>c</i> [pm]	γ́[°]	_		[pm]		[°]	
$\operatorname{Agl}_{2}(\operatorname{C}_{2}\operatorname{O}_{4})^{c}$	m P2 ₁ /c 2	346(2) 616(2) 947(4)	76(1)	AgO ₆	O^b	260(-,43)		not given	443
$\begin{array}{l} \operatorname{Ag}^{I}(\mathrm{C}_{4}\mathrm{H}_{8}\mathrm{O}_{2})_{3} \\ (\mathrm{ClO}_{4}) \end{array}$	c Pmcm 1	767(1)		AgO ₆	0	246		not given	444
$Ag^{I}(C_{4}H_{8}O_{2})_{3}$ (ClO ₄) (at 245K)	m	1093 1081 768	94.40	AgO ₆					445
$\begin{array}{l} Ag^{I}_{2}\{SO_{3}\\ (CH_{2})_{2}SO_{3}\}\end{array}$	tr P 1 1	511.35(7) 529.32(4) 790.8(1)	73.99(1) 93.64(1) 119.49(1)	AgO ₆	0	243.5(3,67) 261.5(3,83)		74.9-160.8(1)	428
$Ag^{I}(C_{6}H_{10}N_{2}O_{2})_{0.5}(NO_{3})$	tr P 1 2	541.0(4) 756.2(4) 802.0(6)	92.00(4) 105.07(4) 104.60(4)	AgO ₆	O O ₂ NO	238.0(7,26) 262.4(8,56) 259.5(9.17)		48.8-170.1(2)	446
$Ag^{I}(C_{4}H_{8}O_{2})_{3}$ (AsF_{6})	m P2 ₁ /n 4	939.9(2) 1814.0(3) 1147.6(3)		AgO ₅ F	O F	245.0(6,39) 269.7(7)	O,O⁵ O,F	92.7(3,6.6) 168.3(2,6.1) 84.2(3,8.2)	447
$\operatorname{Ag_2(C_4H_8OS)}_{(\operatorname{NO}_3)_2}$	m P2 ₁ /c 4	1206.5(2) 625.9(3) 1352.7(2)	82.42(2)	AgO ₅ S	O µO	249.3(6,117) 281.3(7,11) 277.6(6,19)	0,0 0,8	175.6(3) not given 76.2-155.5(2) ^{d}	448
Ag ^I (pz)(NO ₃)	m P2/a 2	1421(4) 647(2) 356(1)	95.15(10)	AgO ₄ N ₂	μ5 Ο Ν	250.0(2,8) 272.0(21) 294.3(17) 221.3(14)	0,0 N,N	95.2(6,14.0) 159.2(9)	449
Ag ^{li} (bpy)(NO ₃) ₂	tr PI 2	697.5(2) 999.4(2) 1032.2(2)	113.46(2) 100.71(2) 95.28(2)	AgO ₄ N ₂	0 N	214.2(15,6) 275.8(15,5) 216.6(16.42)	0,0 N,N 0 N	69.8-160.2(4) 75.9(7) 77.2-166.3(6)	450
$Ag_{3}^{I}(cry)(NO_{3})_{3}^{e}$	m C2/c 4	2494.2(4) 1013.4(2) 1588.2(2)	121.86(2)	AgO ₄ N ₂	Ο μΟ Ν	244.2(3,60) 260.4(2) 244.6(2,113)	0,	not given	451
$[Ag^{I}{C_{5}(CO_{2}Me)_{5}}]$ $(H_{2}O)] \cdot 1.5H_{2}O$	tr P1 2	1245(1) 1077.6(9) 762.4(8)	94.91(7) 91.50(7) 99.90(7)	AgO ₄ C ₂	$ \begin{array}{c} O \\ H_2 O \\ C \end{array} $	240.4(6,13) 244.4(5,7) 269.7(7,111)	0,0	85.6(2,11.2) 127.3(2) 156.8(2) ⁱ	58
Ag ¹ (mgly)(NO ₃)	m P2 ₁ 2	1363.4(6) 622.5(4) 678.4(4)	104.8(7)	AgO ₄ S ₂	O S	253.6(9,38) 285.5(9) 254.4(2,33)		not given	452
Ag ^I (BrCH ₂ SO ₃)	or Pnma 4	1342.0(2) 756.9(2) 499.6(1)		AgO ₄ Br ₂	O Br	235.4(4) 248.6(4) 297.09(5)	O,O O,Br	86.9(2) 89.9(1,4.4)	453
$\begin{array}{l} \operatorname{Ag^{I}(C_{16}H_{16})} \\ (\operatorname{ClO}_{4})^{\mathrm{f}} \end{array}$	m C2 2	2083.9(4) 699.0(2) 595.6(3)	95.07(4)	AgC ₄ O ₂	C O	252.2(7,51) 246.9(9)	C,C 0,0 C.O	31.9(3) 125.0(5) 97.0(5.3.6)	454
$Ag^{I}(C_{6}H_{6})(ClO_{4})$	or Cmcm 4	835 802 1168		AgC ₄ O ₂	C O	256.5(7,69) 268.0(14,22)	-,-	not given	455
$Ag^{I}(C_{8}H_{8})(NO_{3})$	m P2 ₁ /a 4	1684(4) 894(2) 586(1)	91.7(1)	AgC_4O_2	C O	265(3,19) 240(2,4)		not given	456
Ag ^I (C ₈ H ₈)(NO ₃) ^g	m P2 ₁ /a 4	1679.6(3) 893.2(2) 586.0(1)	90.72(1)	AgC ₄ O ₂	C O	263.8(5,167) 240.0(4,32)		not given	457

 Table 19 Structural data for polynuclear silver compounds, coordination number six and higher^a

Table 19 Contin	ued								
$\overline{\text{Ag}^{I}(\text{dmcn})(\text{NO}_{3})}$	m	1130.9(6)		AgC ₄ O ₂	С	243.1(1,88)		not given	458
(at 153 K)	Cc	1031.5(12)	95.46(6)		0	243.1(6,50)			
	4	974.0(9)							
$Ag^{I}(anph)(ClO_{4})$	or	1853.1(2)		AgC_4O_2	С	249(1,5)	C,C	32.5(5,1)	459
	Pmnb	1558.6(5)			μO	241(2,7)		101.3(8,1)	
	8	787.7(3)						$140.1(9,3.3)^{h}$	
$Ag^{I}(C_{14}H_{28}S_{2})$	m	1104.9(1)		$AgO_2C_2S_2$	0	259.2(9,55)	0,0	47.2(2)	149
(NO ₃)	$P2_1/c$	782.3(1)	118.39(1)		С	249.4(7,28)	C,C	30.7(3)	
	4	1435.2(3)			μS	256.5(2,7)	S,S	123.0(2)	
$Ag^{I}(C_{12}H_{24}O_{5}S)$	m	985.6(4)		AgO ₅ S ₂	0	272.0(10,238)		not given	460
$(NO_3)H_2O$	$P2_1/c$	1992.3(6)	92.11(3)		S	261.8(17,55)		-	
57 2	4	931.0(2)							
$Ag^{I}(C_{8}H_{10})$	or	2554(5)		AgO_6C_2	0	273(5,30)	0,0	$112(-,12)^{k}$	461
(NO ₃)	P2,2,2	628(1)			С	242(5,1)	O,C	107(-,12)	
() <i>,</i>	4	560(3)				,	-	,	
$Ag_{3}^{1}(C_{8}H_{8})_{2}$	or	2602.6(5)		AgC ₄ O ₃	С	250.2(8,2)			462
(NO ₃) ₃	Pbcn	1075.6(2)		••••		295.0(8,20)			
. 575	8	1437.9(2)			0	242.6(8,52)			
		. ,		AgC ₈ O	С	256.8(9,64)			
				0		280.2(9,42)			
					0	238.9(5)			
				AgO ₅ C ₄	0	268.4(7,215)			
				0 0 4	С	260.6(8,1)			
						275.8(10.15)			
$Ag^{I}(C_{12}O_{10})$	m	804.5(2)		AgC ₆ O ₃	С	262.2(6,111)	0,0	88.5(4,2.1)	463
(CIO_{λ})	$P2_1/c$	1741.2(4)	91.13(2)	005	Ó	241.1(10,170)	C.C	70.0-151.3(2)	
	4	850.1(Ì)				,	O.C	75.6-158.2(3)	
$Ag^{I}(C_{15}H_{24})$	or	903.6(4)		AgO₄C₄	0	261(1.23)	0.0	47,75	464
$(NO_3)^l$	P2,2,2	2178.6(7)			Ċ	256(1.12)	C.C	30	
(- 3)	4	800.8(5)					Ó,C	86(-,2)	
$Ag_{6}^{I}(C_{4}H_{8}OS)$	tr	1073.47(9)	91.556(5)	$AgO_{s}S_{m}^{m}$	0	239.7-	0,0	45.3-143.4(3)	448
(NO ₃)	ΡĪ	1313.67(13)	92.668(5)	2, ,		322.3(15)	S,S	166.4(2)	
	2	724.88(3)	89.141(8)		μS	246.5(2,58)	Ó,S	68.0-169.8(2)	

 $Ag^{I}(amphy)(CIO)_{4}$; or, P2₁2₁2₁, 4; a = 641.6(1), b = 1028.6(2), c = 1805.6(2) pm $[AgC_4O_2]$.⁴⁵⁹ Ag^I(cap); tr, PT, 2; a = 458.8, b = 401.6, c = 2041 pm; a = 101.12, $\beta = 122.28$, $\gamma = 80.4^{\circ}$.⁴⁶⁵ Ag^I(sce); tr, PT, 2; a = 469.3, b = 412.0, c = 5035 pm; a = 104.35, $\beta = 93.59$, $\gamma = 76.1^{\circ}$.⁴⁶⁵ Ag^{II}(C₆H₄NO₂)₂; tg, 2; a = 698, c = 1268 pm.⁴⁶⁶ Ag^{II}(dbp); m, P2₁, 2; a = 1450, b = 577, c = 903 pm; $\beta = 112.50^{\circ}$.⁴⁶⁷ Ag^{II}(dep); or, Pccn, 8; a = 2030, b = 1440, c = 588 pm.⁴⁶⁷ aWhere more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is the maximum deviation from the mean. ^bThe chemical identity of the coordinated atom/ligand is specified in these columns. ^cAg-Ag = 342(-,16) pm. ^dAg-O-Ag = 111.1(1)°; Ag-S-Ag = 95.9(2)°; Ag-Ag = 408.8(1.36) pm. ^cAg-Ag = 387.6(1) pm. ^fAg-Ag = 242.5(7) pm. ^gAg-Ag = 263.8 (-,159) pm. ^hO-Ag-O = 99.8(5)°; Ag-O-Ag = 111.5(5)°. ^{(C}-Ag-C = 30.7(2)°; O-Ag-C = 92.8(2,7.7), 113.6(2,5.3) and 133.1(2)°. ^fO-Ag-S = 91.4(2) and 120.1(2)°; C-Ag-S = 77.5(2) and 106.2(2)°; Ag-S-Ag = 121.2(2)°. ^kvalues are of mid-point (O...O) and (C = C); Ag-Ag = 234 pm. ^fAg-Ag = 247(1,1) pm. ^mThere are chromophores: AgO₅, AgO₆ AgO₆S₂, AgO₁₀ (2x), AgO₉S (2x); Ag-S-Ag = 102.7(1) and 112.5(1)°.

8. CONCLUSIONS

Almost six hundred silver coordination and organometallic compounds are surveyed in this review. The silver atom is found in oxidation states of +1, +2, and +3. There are only two examples of Ag(III)^{75,76} and these are in square-planar environments. Silver(II) atoms are found in digonal,¹⁷ square-planar,^{64,68-73} tetrahedral^{83,106} and hexa-coordinated^{143,144,450,466} environments. By far the most

common is the Ag(I) atom, and the number of examples of various geometries increases in the order: 4-coordinate (mostly tetrahedral) < two-coordinate < three-coordinate < six-coordinate < five-coordinate < seven-coordinate. Higher coordination numbers are rare. From a nuclearity point of view all possibilities from mono- to decanuclear are found, with tetradeca- and polynuclear completing the range. The latter are more common than the mono- and binuclear derivatives. There are several examples^{27,49,120,121,130,131,179,180,194,195,265,266,309,310,400},

There are several examples 2,49,120,121,130,131,179,160,194,193,260,260,309,310,400, 405,406 which exhibit distortion isomerism.⁴⁴ In another group of examples $^{8,9,19,20,24,28,33,36,37,49,61,72,93,110,126,-164,383,442}$ there are two crystallographically independent molecules, and in one case⁶³ three such molecules, differing by degree of distortion. It is noted that this type of isomerism is more common in the Ag series than in the Cu⁴² and Au⁴³ series. There is an example of *cis-trans* isomerism, 53,54 and Ag(CNO)²⁹¹ exists as a polymerisation isomer, ⁴⁴ being found both as a hexamer and a polymer.

The mean Ag(I)-L distances are summarized in Table 20 from which the values of hetero-coordinated ligands have been excluded. The biggest variety of donor atoms are found in the three- and four-coordinated derivatives. Higher coordination number silver(I) (five and higher), and two-coordinate derivatives prefer O, N, C, and S donor ligands, with multidentate varieties prevailing for the higher coordination. In the series of four-coordinate silver(I) atoms, there is a very wide range of coordination atoms (ligands) and single atoms bound as unidentate, doubly- triply-, and quadruply-bridged ligands, iodine being the most common. Amongst the unidentate ligands, triphenylphosphine is the most common.

There is a trend for the Ag-L distance to increase with the covalent radius of the coordinated atom and also increasing coordination number. There are some exceptions, especially for Ag-O which covers a wide range of values. Other trends have been discussed in the separate sections. The mean Ag(II)-N bond distances, 212(1,1) pm (2-coordinate) and 215(8,4) pm (4-coordinate), and the Ag(II)-N value of 198(1,1) pm, are all shorter than those of the Ag(I)-N value. The Ag(II)-S value of 255(2,5) pm (4-coordinate) is shorter than the Ag(I)-S distance.

A summary of the M(I)-L distances (M = Cu, Ag or Au) is given in Table 21, which contains the analysis of almost two thousand derivatives (about one thousand $Cu(I)^{42}$ and three hundred Au(I)⁴³ examples). In general it can be seen that the mean M(I)-L bond distance increases with covalent radius of M in the order Cu (138 pm) < Au (143 pm) < Ag (153 pm). The coordination sphere about the M(I) atom is most expanded in the case of Ag(I) and least in the case of Au(I). In general, the M-L distances with O, N, C, and S donor ligands cover the widest range. Whereas 4-coordination prevails in the chemistry of Cu(I) and Ag(I), 2-coordination prevails in the chemistry of Au(I).

Table 22 shows the shortest observed M(I)-M(I) distances found in homobi-, -tri-, -tetra- and -polynuclear derivatives. In general, the shortest M(I)-M(I) distances increase in the order Cu(I) < Ag(I) < Au(I). It is noted that all these distances are within the range acceptable for a direct metal-metal bond.

This review, together with its precursors for copper(I)⁴² and gold,⁴³ represents the first overview of structural data for the M(I) atoms of the copper subgroup. Previous studies have covered other subgroups, titanium,^{468–472} vanadium^{473–478} and manganese.^{479–482} There is also a separate review on the structures of heterometallic silver compounds.⁴⁸³ During the collection of this data it has become apparent that despite the increasing availability of data retrieval systems, the tracing of

Coord. atom	Covalent		Coc	ordination num	ber	
(ligand) ^v	radius [pm]	two	three	four	five	six
H	37			176(7,7)		
F	71		$255(1.1)^{c}$. , ,		
LO	73		240(31,38)	250(18,26) 250(19,14) ^c	266(40,34)	244(1,1)
L ² O L ⁿ O		222(9,10)	230(15,20)	244(25,35)	252(32,16) 247(47,33)	245(14,25) 259(45,41)
LN	75	211(9,11) 213(4,4)	236(16,10)	232(30,9)		
L^2N		215(8,11)	226(6.13)	233(11.22)		219(7.4)
L ⁿ N			((,,)	238(14.17)	242(17.13)	251(18,10)
LC	77	215(14,10) $220(4,4)^{c}$		200(11,17)	2.=(1.,12)	(10,10)
L^2C		211(10.12)	243(30.7)	246(36.15)		219(7.4)
Ĩ.ºC		211(10,12)		238(14,17)	242(17 13)	251(18.10)
ถี้ .	99	234	236	260(21,40)	2.2(17,13)	231(10,10)
	,,	234	262(18 19)	$266(13,17)^{\circ}$		
			202(10,1))	$271(18,23)^d$		
				271(10,23)		
15	102	240	253(57)	253(16.26)		
LO	102	238(0 10)	253(3,7) 252(12.16) ^c	270(20,20)	251(1-1)	
		230(9,10) $244(11.43)^d$	252(12,10)	270(20,40) $271(18,13)^d$	251(1,1)	
		244(11,43)		271(10,15)	270(15 18)d	
1 ² S		227	254(12.13)	267(10.13)	277(15,10)	
		237	254(12,15)	257(17,13)	765(10 21)	255(8 4)
	110	241(2.6)	202(22,20) 246(5,17)	257(17,11)	203(10,21) 242(2,10)	233(0,4)
	110	241(5,0)	240(3,17)	232(10,18)	243(3,10)	
1 ² D		226	247	243 246(13.10)		
L r I nD		238	244(3,3)	240(13,10)		
	114	245	250(2.2)	255		
DI	114	243	230(2,2)	203(33,39)		
			207(3,8)	$270(12,10)^{\circ}$		
				$2/7(14,19)^{-2}$		
T 20 -	117		250(10.12)	284(13,13)		
L-Se	11/		259(10,12)	270		
• •	100	249	264(9,7)	2/4(12,16)	0.5.5 (7.1.0)	
LAS	122	248		266(4,4)	255(7,13)	
L-AS	122		220(2.2)	200(11.7)	20U 207d	
1	133		270(2,3)	280(11,7)	28/"	
			$2/8(2,2)^{c}$	285(12,15)		
				289(13,14)"		
				291(10,20) ^e		

Table 20 Summary of Ag(I)-L distances [pm]^a

"The first number in parenthesis is the maximum deviation from the shortest and the second from the longest distances. ${}^{b}L^{2}$ bidentate and Lⁿ multidentate ligand. Doubly bridged atom/ligand. Triply bridged atom/ligand. Quadruply bridged atom/ligand.

relevant material is not always straightforward. One of the problems appears to be associated with the choice of key words for indices, resulting in the effective invisibility of the material from a particular point of view. Some of the data is only available as supplemental material, and this can lead to the bypassing relevant structural features for comparative purposes. Some manuscripts do not even show adequate data, names of ligands and other information important for a comparative study. In several cases the same derivatives has been studied by several different groups without cross referencing. Even when results have differed substantially there

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Coord. atom (ligand)	Covalent radius	M(I) atom		Соо	rdination nun	nber	·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[pm]		two	three	four	five	six
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Н	37	Cu			173(52,56)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag			176(6,6)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Aŭ		172			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	71	Cu			222(16,12)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ag		255(1,1)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	73	Cŭ	186(6,14)	203(33,48)	217(23,38)	223(19,42)	228(23,31)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	222(9,10)	235(26,43)	243(23,36)	255(55,41)	249(35,51)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Au	202				•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	75	Cu	191(9,21)	194(10,47)	205(15,66)	210(12,43)	212(13,13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	213(12,13)	230(10,16)	235(33,20)	242(17,13)	235(23,65)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Aŭ	202	228			,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	77	Cu	200(12,19)	197(25,45)	191(18,44)	202(24,18)	214(22,20)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	216(15,10)	243(30,7)	249(39,32)	251(13,13)	258(23,23)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Au	205	221	247	· · /	, , ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl	99	Cu	210(4,19)	229(17,27)	236(27,39)	237(19,40)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	234	249(13,32)	267(28,33)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Au	226	262	277		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	102	Cu	216(3,12)	235(43,14)	235(16,42)	257(18,15)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	240(11,43)	255(15,32)	262(25,48)	262(12,31)	255(8,4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Au	229	243	228		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р	110	Cu	219(1,1)	224(11,13)	228(13,29)	223(2,3)	215(2,1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ag	240(3,7)	246(7,17)	248(15,22)	243(3,10)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Aŭ	227	231	239		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br	114	Cu	226(5,6)	239(13,20)	253(32,32)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ag	245	258(10,17)	274(44,23)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se	117	Cu		252(26,22)	, , ,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ag		262(13,9)	272(10,18)		
As 122 Cu 239(7,29) Ag 266(4,4) 252(5,16) 1 133 Cu 239 256(11,19) 268(22,30) Ag 274(6,6) 286(17,25) 287 Au 258 277 307			Au	244	、 · · <i>i</i>			
Ag 266(4,4) 252(5,16) 1 133 Cu 239 256(11,19) 268(22,30) Ag 274(6,6) 286(17,25) 287 Au 258 277 307	As	122	Cu .			239(7,29)		
1 133 Cu 239 256(11,19) 268(22,30) Ag 274(6,6) 286(17,25) 287 Au 258 277 307			Ag			266(4,4)	252(5,16)	
Ag 274(6,6) 286(17,25) 287 Au 258 277 307	1	133	Cu	239	256(11,19)	268(22,30)		
Au 258 277 307			Ag		274(6,6)	286(17,25)	287	
			Au	258	277	307		

Table 21 Summary of the M(I)-L distances [pm] for Cu (cov. radius, 138 pm), Ag (153 pm) and Au (143 pm) compounds^a

^{*a*}Data for Cu(I) compounds,⁴² and for Au(I) compounds.⁴³ The first number in parenthesis is the maximum deviation from the lowest and the second from the highest values.

Table 22 Summary of the shortest M(I)-M(I) distances (pm)

Coord. number	M	Binuclear	Trinuclear	Tetranuclear	Polynuclear
2	Cu	241.2(1)	246.6	241.8	
	Ag	265.4(1)	293.3(2)	273.3(2)	280.9(1)
	Au	276(1)		274.8(1)	
3	Cu	243.3	234.8	237.7	242.5
	Ag	272.6(1)		279.9(2)	284.2(1)
	Aŭ	296.2(1)		282.1(1)	. ,
4	Cu	237.1	251.9		239.4
	Ag	284.5(1)	319.8(2)	296.1(2)	280.0(2)

is often no explanation offered. It is hoped that this review will serve to bring together the overall picture and serve to stimulate interest in areas of particular interest.

Acknowledgements

The authors wish to thank those who gave permission for reproduction of original figures, the Chemical Faculty of the Slovak Technical University for their cooperation in allowing M.M. to participate, and the Faculty of Pure and Applied Science of York University and the Ministry of Education of the Slovak Republic for financial support.

References

- 1. C. Kratky, E. Nachbauer and A. Popitsch, Monat. Chem., 112, 592 (1981).
- 2. C.D.M. Beverwijk, C.J.M. van der Kerk, A.J. Leusink and J.G. Noltes, Organometal. Chem. Rev. A, 5, 215 (1970).
- R.N. Keller, Chem. Rev., 28, 229 (1941); M.A. Bennett, ibid, 62, 611 (1962); A.M. Sladkov and L.Y. Ukhin, Usp. Khim., 37, 1750 (1968).
- 4. M. Jansen, J. Less Common Met., 76, 285 (1980).
- L. Constantinescu, Stud. Ceret. Fiz., 25, 1221 (1973); from Chem Abstr., 80, 137672 (1974); W. F. Kuhs, R. Nitsche and K. Scheunemann, Mat. Res. Bull., 44, 241 (1979).
- W.S. McDonald, Annual Reports 319 (1975); P. Murray Rust, ibid, 350 (1976); H.N. Po, Coord. Chem. Rev., 20, 171 (1976); W.E. Smith, ibid, 35, 253 (1981); 45, 307 (1982); C.E. Housecroft, ibid, 115, 141 (1992).
- 7. R. Lingnau and J. Strahle, Angew. Chem. Int. Ed. Engl., 27, 436 (1988).
- 8. U. Zachwieja and H. Jacobs, Z. Anorg. Allg. Chem., 571, 37 (1989).
- 9. T. Yamaguchi and O. Lindqvist, Acta. Chem. Scand. A, 37, 685 (1983).
- 10. Z. Za'k, A. Ruzicka and T. Glowiak, Can. J. Chem., 69, 1080 (1991).
- 11. L.M. Engelhardt, C. Pakawatchai, A.H. White and P.C. Healy, J. Chem. Soc., Dalton Trans., 117 (1985).
- 12. E. Horn, M.R. Snow and E.R.T. Tiekink, Aust. J. Chem., 40, 761 (1987).
- H.W. Roesky, J. Schimkowiak, P.G. Jones, M. Noltemeyer and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., 2507 (1988).
- 14. M.R. Udura and B. Krebs, Inorg. Chim. Acta, 55, 153 (1981).
- 15. K. Aarflot and K. Ase, Acta. Chem Scand. A, 28, 137 (1974).
- 16. C.J. Antti and B.K.S. Lunberg, Acta. Chem. Scand., 25, 1758 (1971).
- 17. C.B. Acland and H.C. Freeman, J. Chem. Soc., Chem. Commun., 1016 (1971).
- 18. K. Aoki and W. Saenger, Acta Crystallogr., Sect. C, 40, 772 (1984).
- 19. F. Belanger-Gariepy and A.L. Beauchamp, J. Amer. Chem. Soc., 102, 3461 (1980).
- 20. W. Khayata, D. Baylocq, F. Pellerin and N. Rodier, Acta Crystallogr., Sec. C, 40, 765 (1984).
- 21. S. Gotsis and A.H. White, Aust. J. Chem., 40, 1603 (1987).
- 22. J.F. Modder, J.M. Ernsting, K. Vrieze, M. de Wit, C.H. Stam and G. van Koten, *Inorg. Chem.*, 30, 1208 (1991).
- 23. J.C. Dyason, P.C. Healy, L.M. Engelhardt and A.H. White, Aust. J. Chem., 38, 1325 (1985).
- 24. I. Sotofte and K. Nielsen, Acta Chem. Scand. A, 37, 891 (1983).
- 25. S.J. Andrews and A.J. Welch, Inorg. Chim. Acta, 105, 89 (1985).
- 26a. J.R. De Member, H.F. Evans, F.A. Wallace and P.A. Tariverdian, J. Amer. Chem. Soc., 105, 5647 (1983).
- 26b. Y. Yamamoto, K. Aoki and H. Yamasaki, Inorg. Chim. Acta, 68, 75 (1982).
- R. Uso'n, A. Laguna, A. Uso'n, P.G. Jones and K. Meyer-Base, J. Chem. Soc., Dalton Trans., 341 (1988).
- J. Vicente, M.T. Chicote, J. Fernandez Baeza, J. Martin, I. Saura Llames, J. Turpin and P.G. Jones, J. Organometal. Chem., 331, 409 (1987).

- 29. C. Eaborn, P.B. Hitchcock, J.D. Smith and A.C. Sullivan, J. Chem. Soc., Chem. Commun., 870 (1984).
- 30. R.R. Burch and J.C. Calabrese, J. Amer. Chem. Soc., 108, 5359 (1986).
- 31. G. Helgesson and S. Jagner, Inorg. Chem., 30, 2574 (1991).
- A. Muller, R. Romer, H. Bogge, E. Krickermeyer and N. Zimmermann, Z. Anorg. Allg. Chem., 534, 69 (1986).
- 33. U. Braun, J. Sieler, R. Richter, B. Hetlich and A. Simon, Z. Anorg. Allg. Chem., 557, 134 (1988).
- 34. E.C. Alyea, G. Ferguson and A. Somogyvari, Inorg. Chem., 21, 1369 (1982).
- 35. S.M. Socol, R.A. Jacobson and J.G. Verkade, Inorg. Chem., 23, 88 (1984).
- 36. A. Baiada, F.H. Jardine and R.D. Willett, Inorg. Chem., 29, 3042 (1990).
- 37. M. Camalli, F. Caruso, S. Chaloupka and L.M. Venanzi, Helv. Chim. Acta, 71, 703 (1988).
- 38. M. Camalli and F. Caruso, Inorg. Chim. Acta, 144, 205 (1988).
- M. Camalli, F. Caruso, S. Chaloupka, P.N. Kapoor, P.S. Pregosin and L.M. Venanzi, *Helv. Chim.* Acta, 67, 1603 (1984).
- M. Barrow, H.B. Burgi, M. Camalli, F. Caruso, E. Fischer, L.M. Venanzi and L. Zambonelli, Inorg. Chem., 22, 2356 (1983).
- 41. L.J. Baker, G.A. Bowmaker, D. Camp, Effendy, P.C. Healy, H. Schmidbauer, O. Steigelmann and A.H. White, *Inorg. Chem.*, **31**, 3656 (1992).
- 42. C.E. Holloway and M. Melnik, Reviews Inorg. Chem., 13, 233 (1993).
- 43. M. Melnik and R.V. Parish, Coord. Chem. Rev., 70, 157 (1986).
- M. Melnik, Coord. Chem. Rev., 47, 239 (1982); J. Gazo, I.B. Bersuber, J. Garaj, M. Kabisova, J. Kohout, H. Langfelderova, M. Melnik, M. Serator and F. Valach, Coord. Chem. Rev., 19, 253 (1976).
- 45. R.H.P. Francisco, V.P. Mascarehnas and J.R. Lechat, Acta Crystallogr. Sect. B, 35, 177 (1979).
- 46. R.M. Olk, E. Hoyer, R. Faize, H. Loiseleur and G. Thomas David, Cryst. Struct. Commun., 11, 585 (1982).
- 47. M.I. Bruce and D.N. Duffy, Aust. J. Chem., 39, 1691 (1986).
- 48. A. Baiada, F.H. Jardine and R.D. Willett, Inorg. Chem., 20, 4805 (1990).
- 49. A. Camalli and F. Caruso, Inorg. Chim. Acta, 127, 209 (1987).
- 50. G.A. Bowmaker, A. Camus, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., 727 (1990).
- 51. A.P. Salazar, F.H. Cano and S. Garcia-Blanco, Z. Kristallogr., 152, 253 (1980).
- 52. R.V. Amantila Murthy and B.V.R. Murthy, Z. Kristallogr., 144, 259 (1976).
- 53. O. Ermer, H. Eser and J.D. Dunitz, Helv. Chim. Acta, 54, 2469 (1971).
- 54. P. Ganis and J.D. Dunitz, Helv. Chim. Acta, 50, 2379 (1967).
- E.A.H. Griffith and E.L. Amma, J. Chem. Soc., Chem. Commun., 622 (1968); J. Amer. Chem. Soc., 92, 3167 (1971).
- G. Wulfsberg, D. Jackson, W. Ilsley, S. Dou, A. Weiss and J. Gagliardi, Jr., Z. Naturforsch., 47a, 75 (1992).
- P.F. Barrow, J.C. Dyason, P.C. Healy, L.M. Engelhardt, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., 1965 (1986).
- M.I. Bruce, M.L. Williams, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., 799 (1983).
- 59. M. Barrow, H.B. Burgi, D.K. Johnson and L.M. Venanzi, J. Amer. Chem. Soc., 98, 2356 (1976).
- 60. T. Aoyama, M. Yamanaka, S. Ohba and Y. Saito, Acta Crystallogr., Sect. C, 46, 762 (1990).
- 61. R.D. Gillard, L.R. Hanton and S.H. Mitchell, Polyhedron, 17, 2127 (1990).
- 62. K. Nilsson and A. Oskarsson, Acta Chem. Scand., Ser. A, 36, 605 (1982).
- 63. K. Nilsson and A. Oskarsson, Acta Chem. Scand., Ser. A, 38, 79 (1984).
- 64. J.L. Atwood, M.L. Simms and D.A. Zatko, Cryst. Struct. Commun., 2, 279 (1973).
- 65. K.V. Goodwin, D.R. McMillin and W.R. Robinson, Inorg. Chem., 25, 2033 (1986).
- 66. T.G. Richmond, E.P. Kelson, A.M. Arif and G.B. Carpenter, J. Amer. Chem. Soc., 110, 2334 (1988).
- A. Lorenzotti, F. Bonati, A. Cingolani, G.G. Lobbia, D. Leonesi and B. Bovio, *Inorg. Chim. Acta*, 170, 199 (1990).
- 68. G. Donnay and C.B. Storm, Mol. Struct., 2, 287 (1967).
- W.R. Scheidt, J.U. Mondal, C.W. Eigenbrot, A. Alder, L.J. Radonovich and J.H. Hoard, *Inorg. Chem.*, 25, 795 (1986).
- 70. M.L. Schneider, J. Chem. Soc., Dalton Trans., 1093 (1972).
- 71. H.N. Po, E. Brinkman and R.J. Doedens, Acta Crystallogr., Sect. C, 47, 2310 (1991).

- 72. T. Ito, H. Ito and K. Toriumi, Chem. Lett., 1101 (1981).
- 73. K. Bowman Mertes, Inorg. Chem., 17, 49 (1978).
- 74. G.C. van Stein, G. van Koten, K. Vrieze, A.L. Spek, E.A. Klop and C. Brevard, Inorg. Chim. Acta, 78, L61 (1983); Inorg. Chem., 24, 1367 (1985).
- 75. L. Coghi and G. Pelizzi, Acta Crystallogr. Sect. B, 31, 131 (1975).
- M.L. Simms, J.L. Atwood and D.A. Zatko, J. Chem. Soc., Chem. Commun., 46 (1973). 76.
- 77a. J.E. McMurray, G.J. Haley, J.R. Matz, J.C. Clardy and J. Mitchell, J. Amer. Chem. Soc., 108, 515 (1986).
- 77b. A. Albinati, S.V. Meille and G. Carturan, J. Organometal. Chem., 182, 269 (1979).
- 78. U. Braun, R. Richter, J. Sieler, A.I. Yanovsky and Y.T. Struchkov, Z. Anorg. Allg. Chem., 529, 201 (1985).
- 79. J. Buter, R.M. Kellog and F. van Bolhuis, J. Chem. Soc., Chem. Commun., 910 (1991).
- 80. H.W. Roesky, M. Thomas, J. Schimkowiak, P.G. Jones, W. Pinkert and G.M. Sheldrick, J. Chem. Soc., Chem. Commun., 895 (1982).
- M.B. Hursthouse, K.M. Abdul Malik and S. Nurun Nabi, J. Chem. Soc., Dalton Trans., 355 81. (1980).
- 82. B. de Groot and S.J. Loeb, J. Chem. Soc., Chem. Commun., 1775 (1990).
- 83. H. Hittenhausen and H. van der Meer, Cryst. Struct. Commun., 7, 385 (1978).
- B. de Groot and S.J. Loeb, Inorg. Chem., 30, 3103 (1991). 84.
- 85. L.M. Engelhardt, C. Pakarwatchai, A.H. White and P.C. Healy, J. Chem. Soc., Dalton Trans., 125 (1985).
- 86. F.A. Cotton and R.L. Luck, Acta Crystallogr., Sect. C, 45, 1222 (1989).
- 87a. G.A. Bowmaker, P.C. Healey, L.M. Engelhardt, J.D. Kildea, B.W. Skelton and A.H. White, Aust. J. Chem., 43, 1697 (1990).
- 87b. C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Organometal. Chem., 277, 29 (1984).
- 88. A.J. Arduengo, H.V. Rasika Dias and J.C. Calabrese, J. Amer. Chem., Soc., 113, 7071 (1991). 89. C.S.W. Harker and E.R.T. Tiekink, J. Coord. Chem., 21, 287 (1990).
- 90. D. Franzoni, G. Pelizzi, G. Predieri, P. Tarasconi and C. Pelizzi, Inorg. Chim. Acta, 150, 279 (1988).
- 91. M. Nardelli, C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Chem. Soc., Dalton Trans., 321 (1985).
- 92. A. Bonardi, A. Cantoni, C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Organometal. Chem., 402, 281 (1991).
- 93. C. Stockheim, K. Wieghardt, B. Nuber, J. Weiss, U. Florke and H.J. Haupt, J. Chem. Soc., Dalton Trans., 1487 (1991).
- 94. H.C. Kang, A.W. Hanson, B. Eaton and V. Bockelheide, J. Amer. Chem. Soc., 109, 1979 (1985).
- T.C. Lee and E.K. Amma, J. Cryst. Mol. Struct., 2, 125 (1972). 95.
- 96. P.J. Blower, J.A. Clarkson, S.C. Rawle, J.A.R. Hartman, R.E. Wolf, Jr., R. Yagbasan, S.G. Bott and S.R. Cooper, Inorg. Chem., 28, 4040 (1989).
- 97. B. de Groot, G.R. Giesbrecht, S.J. Loeb and G.K.H. Shimizu, Inorg. Chem., 30, 177 (1991).
- S.O. Grim, S.A. Sangokoya, A.L. Rheingold, W. McFarlane, I.J. Colquhoun and R.D. Gilardi, 98. Inorg. Chem., 30, 2519 (1991).
- 99 V.D. Makhaev, A.P. Borisov, E.B. Lobkovskiv and K.N. Semenko, Izv. Akad. Nauk SSSR, Ser Khim., 11, 2614 (1980); E.B. Lobkovskij, M.Y. Antipin, A.I. Borisov, V.D. Makhaev, K.N. Semenko and Y.T. Struchkov, Koord. Khim., 7, 307 (1981).
- 100. A. Cassel, Acta Crystallogr., Sect. B, 37, 229 (1981).
- 101. L.M. Engelhardt, P.C. Healy, V.A. Patrick and A.H. White, Aust. J. Chem., 40, 1873 (1987).
- 102. M. Camalli and F. Caruso, Inorg. Chim. Acta, 169, 189 (1990).
- 103. C. Pelizzi, G. Pelizzi and P. Tarasconi, J. Organometal. Chem., 281, 403 (1985).
- 104. P.N Ray and N.N. Saha, J. Crystl. Mol. Struct., 8, 67 (1978).
- 105. R.H. Benno and C.J. Fritchie, Jr., Acta Crystallogr., Sect. B, 29, 2493 (1973).
- 106. M.G.B. Drew, R.W. Mathews and R.A. Walton, Inorg. Nucl. Chem. Lett., 6, 277 (1970).
- 107. J.E. Fleming and H. Lynton, Can. J. Chem., 46, 471 (1968).
- 108. J.P. Deloume, R. Faure and H. Loiseleur, Acta Crystallogr., Sect. B, 33, 2709 (1977). 109. H.W. Roesky, M. Thomas, J. Schimkowiak, M. Schmidt, M. Noltemeyer and G.M. Sheldrick, J. Chem. Soc., Chem. Commun., 790 (1982).
- 110. T.D. Wade and C.J. Fritchie, Jr., J. Biol. Chem., 248, 2337 (1973).
- 111. C.S.W. Harker and E.R.T. Tiekink, Acta Crystallogr., Sect. C, 45, 1815 (1989).
- 112. L. Lansau, Y. Wenbin and Y. Huahui, Xiamen Daxue Xuebao Ziran Kexuban, 27, 437 (1988); from Chem. Abstr. 110, 105569k (1989).

- 113. L. Lansau, Y. Huahui and Z. Qianer, *Jiegou Huaxue*, 10, 97 (1991); from *Chem. Abstr.*, 115, 246591b (1991).
- 114. B. Femi-Onadeko, Z. Kristallogr., 152, 159 (1980).
- 115. F. Bigoli, E. Leporati and M.A. Pellinghelli, Cryst. Struct. Commun., 4, 127 (1975).
- 116. S. Knapp, T.P. Keenean, J. Liu, J.A. Potenza and H.J. Schugar, *Inorg. Chem.*, **29**, 2189 (1990). 117. A.A. Dvorkin, Y.A. Simonov, L.I. Budarin, E.V. Fesenko and V.N. Kalinin, *Kristallografiya*, **35**,
- 1460 (1990); from Chem Abstr., 114, 155931a (1991).
- 118. E.R. Tiekink, J. Coord. Chem., 17, 239 (1988).
- 119. T. Kaluo, X. Qing, Y. Jianping, Y. Qingchuan and T. Yougi, *Huaxue Xuebao*, **48**, 242 (1990); from *Chem. Abstr.*, **113**, 125442 (1990).
- 120. L.N. Engelhardt, P.C. Hcaly, J.D. Kildea and A.H. White, Aust. J. Chem., 42, 907 (1989).
- 121. Effendy, L.M. Engelhardt, P.C. Healy, B.W. Skelton and A.H. White, Aust. J. Chem., 44, 1585 (1991).
- 122. P. Karagiannidis, P. Aslanidis, S. Kokkou and C.J. Cheer, Inorg. Chim. Acta, 172, 247 (1990).
- 123. M. Alleaume and D. Hickel, J. Chem. Soc., Chem. Commun., 1422 (1970).
- 124. M. Shiro and H. Koyama, J. Chem. Soc. B, 243 (1970).
- 125. D.M. Walba, M. Hermsmeier, R. Curtis Haltiwanger and J.H. Noordik, J. Org. Chem., 51, 245 (1986).
- 126. S.M. Nelson, S.G. McFall, M.G.B. Drew, A.H. bin Othman and N.B. Mason, J. Chem., Soc., Chem. Commun., 167 (1977).
- 127. E.C. Constable, M.G.B. Drew, G. Forsyth and M.D. Ward, J. Chem. Soc., Chem. Commun., 1450 (1988).
- 128. M.G.B. Drew, C. Cairns, S.G. McFall and S.M. Nelson, J. Chem. Soc., Dalton Trans., 2020 (1980).
- 129. U. Kallert and R. Mattes, Inorg. Chim Acta, 180, 263 (1991).
- 130. R. Louis, F. Arnaud-Neu, R. Weiss and M.J. Schwing-Weill, Inorg. Nucl. Chem. Lett., 13, 31 (1977); R. Louis, Y. Agnus and R. Weiss, Acta Crystallogr., Sect. B, 33, 1418 (1977).
- 131. R. Louis, D. Pelissard and R. Weiss, Acta Crystallogr., Sect. B, 32, 1480 (1976).
- 132. G. Ferguson, R. McCrindle and M. Parvez, Acta Crystallogr., Sect. C, 40, 354 (1984).
- 133. N. Otake, M. Koenuma, H. Kinashi, S. Sato and Y. Saito, J. Chem. Soc., Chem. Commun., 92 (1975).
- 134. C. Riche and C. Pascard-Billy, J. Chem. Soc., Chem. Commun., 951 (1975).
- 135. P. Van Roey, W.L. Luax, P.D. Strong and G.D. Smith, Isz. J. Chem., 24, 283 (1984).
- 136. M.G. Newton and I.C. Paul, J. Amer. Chem. Soc., 88, 3161 (1966); J.S. McKechnie, M.G. Newton and I.C. Paul, J. Amer. Chem. Soc., 88, 4819 (1967).
- C. Cohen-Addad, P. Baret, P. Chautemps and J.L. Pierre, Acta Crystallogr., Sect. C, 39, 1346 (1983).
- 138. J. Clarkson, R. Yagbasan, P.J. Blower, S.C. Rawle and S.R. Cooper, J. Chem. Soc., Chem. Commun., 950 (1987).
- 139. A.J. Blake, R.O. Gould, A.J. Holder, T.I. Hyde and M. Schroder, Polyhedron, 8, 513 (1989).
- 140. H.J. Kuppers, K. Weighardt, Y.H. Tsay, C. Kruger, B. Nuber and J. Weiss, Angew. Chem. Int. Ed. Engl., 26, 575 (1987).
- 141. H. Hofmann, P.G. Jones, M. Noltemeyer, E. Peymann, W. Pinkert, H.W. Roesky and G.M. Sheldrick, J. Organometal. Chem., 249, 97 (1983).
- 142. M.J. Kronenburg, C.A. Reiss, K. Goubitz and D. Heijdenreck, Acta Crystallogr., Sect. C, 45, 1361 (1989).
- 143. M.G.B. Drew, G.W.A. Fowles, R.W. Matthews and R.A. Walton, J. Amer. Chem. Soc., 91, 7769 (1969); M.G.B. Drew, R.W. Matthews and R.A. Walton, J. Chem. Soc. A, 1405 (1970).
- 144. M.G.B. Drew, R.W. Matthews and R.A. Walton, J. Chem. Soc., Sec. A, 2959 (1971).
- 145. C.A. Reiss, K. Goubitz and D. Heijdenrijk, Acta Crystallogr., Sect. C, 46, 1089 (1990).
- 146. M. Fangming, L. Xiaolan, Z. Shufen, J. Zonghui and W. Genglin, *Wuli Huaxue Xuebao*, 4, 20 (1988); from *Chem. Abstr.*, 108, 214378b (1988).
- 147. G.M. McLaughlin, G.A. Sim, J.R. Kiechel and C. Tamm, J. Chem. Soc., Chem. Commun., 1398 (1970).
- A.S. Craig, R. Kataky, D. Parker, H. Adams, N. Bailey and H. Schneider, J. Chem. Soc., Chem. Commun., 1870 (1989).
- 149. E.C. Alyes, G. Ferguson, A. McAlees, R. McCrindle, R. Meyers, P.Y. Siew and S.A. Dias, J. Chem. Soc., Dalton Trans., 481 (1981).
- 150. D. Parker, A.S. Craig, G. Ferguson and A.J. Lough, Polyhedron, 8, 2951 (1989).

- 151. A.J. Blake, G. Reid and M. Schroder, J. Chem. Soc., Dalton Trans., 615 (1991).
- 152. M.G.B. Drew, D.A. Rice and S. Bin Silong, Acta. Crystallogr, Sect. C, 40, 2014 (1984).
- 153. L. Zuocai and S. Meicheng, Beijin Daxue Xuebao, Ziron Kexueban, 17 (1987); from Chem. Abstr., 109, 83821m (1988).
- 154. P.J. Jones, T. Gries, H. Grutzmacher, H.W. Roesky, J. Schimkowiak and G.M. Sheldrick, Angew. Chem., 96, 357 (1984).
- 155. R. Faure, H. Loiseleur, G. Haufe and H. Trauer, Acta Crystallogr., Sect. C, 41, 1593 (1985).
- 156. T.C.W. Mak and W.C. Ho, J. Organometal. Chem., 243, 233 (1983).
- 157a.J.E. McMurry, G.J. Haley, J.R. Matz, J.C. Clardy and J. Mitchell, J. Amer. Chem. Soc., 108, 515 (1986).
- 157b.J.D. Ferrar, A. Djebli, C. Tessier-Youngs and W.J. Youngs, J. Amer. Chem. Soc., 110, 647 (1988).
- 158. R.I. Papasergio, C.L. Raston and A.H. White, J. Chem. Soc., Chem. Commun., 612 (1984): J. Chem. Soc., Dalton Trans., 3085 (1987).
- 159. D. Fenske, G. Baum, A. Zinn and K. Dehnicke, Z. Naturforsch., 45b, 1273 (1990).
- 160. J. Beck and J. Strahle, Z. Naturforsch., 41b, 4 (1986).
- 161. F.A. Cotton, X. Feng, M. Matusz and R. Poli, J. Amer. Chem. Soc., 110, 7077 (1988).
- 162. M. Munakata, M. Munakata, M. Malkowa, S. Kitagawa, M. Adachi and H. Masuda, *Inorg. Chim. Acta*, 167, 181 (1990).
- 163. T. Tsuda, S. Ohba, M. Takahashi and M. Ito, Acta Crystallogr., Sect. C, 45, 887 (1989).
- 164. P. Coggon and A.T. McPhail, J. Chem. Soc., Chem. Commun., 91 (1972).
- 165. B.T. Usubaliev, E.M. Movsumov, I.R. Aniraslanov, A.I. Akhmedov, A.A. Musaev and K.S. Mamedov, *Zh. Struct. Khim.*, **22**, 99 (1981).
- 166. A.E. Blakeslee and J.L. Hoard, J. Chem. Soc., 3029 (1956).
- 167. T.C.W. Mak, W.H. Yip, C.H.L. Kennard, G. Smith and E.J. O'Reilly, Aust. J. Chem., 41, 683 (1988).
- 168. J. Vicente, M.T. Chicote, I. Saura-Llames and P.G. Jones, Organometallics, 8, 767 (1989).
- 169. S. Wang, J.P. Fackler, Jr. and T.F. Carlson, Organometallics, 9, 1973 (1990).
- 170. H.H. Karsch and U. Schubert, Z. Naturforsch., 37b, 186 (1982).
- 171. A. Linek and C. Novak, Acta Crystallogr., Sect. B, 34, 3369 (1978); F. Sorm, M. Suchy, M. Holub, A. Linek, I. Hadinec and C. Novak, Tetrahedron Lett., 1893 (1970).
- 172. E. Hartmann and J. Strahle, Z. Naturforsch., 43b, 525 (1988).
- 173. E.M. Movsumov, A.S. Antsyshkina, V.N. Ostrokova, K.T. Karseva and M.A. Porai-Koshits, Koord. Khim., 16, 517 (1990); from Chem. Abstr., 113, 107987f (1990).
- 174. G. Smith, H.L.C. Kennard and C.W.T. Mak, Z. Kristallogr., 184, 275 (1988); from Chem. Abstr., 111, 222508w (1989).
- 175. C. Gagnon, J. Hubert, R. Rivest and A.L. Beauchamp, Inorg. Chem., 16, 2469 (1977).
- 176. P.G. Jones, Acta Crystallogr., Sect. C, 48, 1314 (1992).
- 177. M.R. Udupa, G. Henkel and B. Krebs, Inorg. Chim. Acta, 18, 173 (1976).
- 178. A. Muller, E. Krickemeyer, M. Zimmermann, M. Romer, H. Bogge, M. Penk and K. Scmitz, *Inorg. Chim. Acta*, **90**, L69 (1984).
- 179. G. Helgesson and S. Jagner, J. Chem. Soc., Dalton Trans., 2413 (1990).
- 180. G. Helgesson and S. Jagner, J. Chem. Soc., Dalton Trans., 2117 (1988).
- 181. R. Maggiulli, R. Mews, W.D. Stohrer and M. Noltemeyer, Chem. Ber., 123, 29 (1990).
- 182. H.W. Roesky, T. Gries, P.G. Jones, K.L. Weber and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., 1781 (1984).
- 183. P.G. Jones, H.W. Roesky, H. Grutzmacher and G.M. Sheldrick, Z. Naturforsch., 40b, 590 (1985).
- 184. M.A. Bailey, M.M. Eddy, D.E. Fenton, G. Jones, S. Moss and A. Mukhopadhyay, J. Chem. Soc., Chem. Commun., 628 (1981); M.A. Bailey, M.M. Eddy, D.E. Fenton, G. Jones, S. Moss, A. Mukhopadhyay and G. Jones, J. Chem. Soc., Dalton Trans., 2281 (1984)."
- 185. D.D. Heinrich, J.P. Fackler, Jr. and P. Lahuerta, Inorg. Chim. Acta, 116, 15 (1986).
- 186. M. Camalli, F. Caruso and L. Zambonelli, Inorg. Chi. Acta, 61, 195 (1982).
- 187. P.F. Rodesiler, E.A. Hall Griffith and B.L. Amma, J. Amer. Chem. Soc., 94, 761 (1972).
- 188. M.R. Udupa and B. Krebs, Inorg. Chim. Acta, 7, 271 (1973).
- 189. M.E. Kamawaya, E. Papavinasam, G.G. Teoh and R.K. Kajaram, Acta Crystallogr., Sect. C, 40, 1318 (1984); Z. Kristallogr., 169, 51 (1984).
- 190. N.C. Baenziger, C.F. Fox, Jr. and S.L. Modak, Acta Crystallogr., Sect. C, 42, 1505 (1986).

- 191. H. Adams, N.A. Bailey, W.D. Carlisle, D.E. Fenton and G. Rossi, J. Chem. Soc., Dalton Trans., 1271 (1990).
- 192. G.C. Van Stein, J. Van Koten, F. Blank, L.C, Taylor, K. Vrieze, A.L. Spek, A.J.M. Duisenberg, A.M.M. Schreurs, B. Kojic-Prodic and C. Brevard, *Inorg. Chim. Acta*, **98**, 107 (1985).
- 193. C. Bianchini, C.A. Ghilardi, A. Meli, A. Orlandini and G. Scapacci, J. Chem. Soc., Dalton Trans., 1969 (1983).
- 194. A. Corradi Bonamartini, G. Fava Gasparri, M. Ferrari Belicchi and M. Nardelli, Acta Crystallogr., Sect. C, 43, 407 (1987).
- 195. S. Gotsis, L.M. Engelhardt, P.C. Healy, J.D. Kildea and A.H. White, Aust. J. Chem., 42, 923 (1989).
- 196. N.W. Alcock, P. Moore, P.A. Lampe and K.F. Mok, J. Chem. Soc., Dalton Trans., 207 (1982).
- 197. P.C. Healy, N.K. Mills and A.H. White, J. Chem. Soc., Dalton Trans., 111 (1985).
- 198. D.M. Ho and R. Bau, Inorg. Chem., 22, 4073 (1983).
- 199. L. Peng, H. Mingsheng, L. Ying, L. Lansun and Y. Huahui, *Huaxue Xuebao*, **49**, 1120 (1991); from *Chem. Abstr.*, **116**, 74889g (1992).
- 200. E.C. Constable, J.M. Holmes and P.R. Raithby, Polyhedron, 10, 127 (1991).
- 201. G.C. von Stein, G. van Koten, K. Vrieze, C. Brevard and A.L. Spek, J. Amer. Chem. Soc., 106, 486 (1984); J. Chem. Soc., Chem. Commun., 1016 (1980).
- 202. T.J. Kistenmacher, M. Rossi and L.G. Marzilli, Inorg. Chem., 18, 240 (1979).
- 203. M.G.B. Drew, R.J. Hobson, P.E.M. Mumba and D.A. Rice, J. Amer. Chem. Soc., Dalton Trans., 1569 (1987).
- 204. K. Aurivillius, A. Cassel and L. Falth, Chim. Scripta, 5, 9 (1974).
- 205. B.K. Teo and J.C. Calabrese, J. Chem. Soc., Chem. Commun., 185 (1976).
- 206. A.M. Manotti Lanfredi, F. Ugozzoli, F. Asaro, G. Pellizer, M. Marsich and A. Camus, *Inorg. Chim. Acta*, 190, 71 (1991).
- 207. S. Attar, N.W. Alcock, G.A. Bowmaker, J.S. Frye, W.H. Bearden and J.H. Nelson, *Inorg. Chem.*, 30, 4166 (1991).
- 208. M.B. Ferrari, G.G. Fava and M.E. Vidoni Tani, Cryst. Struct. Commun., 10, 571 (1981).
- 209. A. Cassel, Acta Crystallogr., Sect. B., 32, 2521 (1976).
- 210. A. Cassel, Acta Crystallogr., Sect. B., 35, 174 (1979).
- 211. A. Cassell, Acta Crystallogr., Sect. B., 31, 1194 (1975).
- 212. M. Ahlgren, T. Pakkanen and I. Tahvanainen, Acta Chem. Scand., Ser. A, 39, 651 (1985).
- 213. J.H. Meiners, J.C. Clardy and J.G. Verkade, Inorg. Chem., 14, 632 (1975).
- 214. A.J. Blake, R.O. Gould, G. Reid and M. Schroder, J. Chem., Soc., Chem. Commun., 974 (1970).
- 215. M.G.B. Drew, D. McDowell and J. Nelson, Polyhedron, 7, 2229 (1988).
- 216. M.R. Colsman, T.D. Newbound, L.J. Marshall, M.D. Noirot, M.M. Miller, G.P. Wulfsberg, J.S. Frye, O.P. Anderson and S.H. Strauss, J. Amer. Chem. Soc., 112, 2349 (1990); M.R. Colsman, M.D. Noirot, M.M. Miller, O.P. Anderson and S.H. Strauss, *ibid*, 110, 6886 (1988).
- 217. L. Peng, L. Ying, H. Mingsheng, L. Lansun and Y. Huahui, Chim. Sci. Bull., 36, 1844 (1991); from Chem. Abstr., 117, 82209w (1992).
- 218. L. Andersen and F. Hulten, Acta Chem Scand., Ser. A, 40, 701 (1986).
- 219. R.L. Bodner and A.I. Popov, Inorg. Chem., 11, 1410 (1972).
- 220. J. Howatson and B. Morosin, Cryst. Struct. Commun., 2, 51 (1973).
- 221. V. Saboonchian, G. Wilkinson, B. Hussain Bates and M.B. Hursthouse, *Polyhedron*, 10, 737 (1991).
- 222. Y. Huahui, L. Lansun, L. Ying, L. Peng and Z. Qianer, *Jiegou Huaxue*, 9, 137 (1990); from *Chem. Abstr.*, 114, 113922t (1991).
- 223. H.W. Roesky, H. Hofmann, P.G. Jones, W. Pinkert and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., 1215 (1983).
- 224. M.G.B. Drew, S.G. McFall, S.M. Nelson and C.P. Waters, J. Chem. Research (S), 16 (1979).
- 225. E.R.T. Tiekink, Acta Crystallogr., Sect. C, 46, 1933 (1990).
- 226. L. Golic, N. Beilc and W. Dietrsch, Polyhedron, 2, 1201 (1983).
- 227. S.V. Lindeman, Y.T. Struchkov and E.I. Morosanova, Koord. Khim., 13, 1135 (1987); from Chem. Abstr., 107, 2109599 (1987).
- 228. H.W. Roesky, M. Thomas, H.G. Schmidt, W. Clegg, M. Noltemeyer and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., 405 (1983).
- 229. C.J. Fritchie, Jr., J. Biol. Chem., 247, 7459 (1972).

- I.F. Taylor, Jr. and E.L. Amma, J. Chem. Soc., Chem. Commun., 1442 (1970); J. Cryst. Mol. Struct., 5, 129 (1975).
- 231. S.C. Nyburg and J. Hilton, Acta Crystallogr., 12, 116 (1959).
- 232. J.K. Monaha Rao and M.A. Viswamitra, Acta Crystallogr., Sect. B., 28, 1484 (1972).
- E.C. Constable, M.S. Khan, M.C. Liptrot, J. Lewis and P.R. Raithby, *Inorg. Chim. Acta*, 179, 239 (1991).
- 234. C.R. Lucas, S. Liu, M.J. Newlands, J.P. Charland and E.J. Gabe, Can. J. Chem., 68, 644 (1990).

235. F. Charbonnier, R. Faure and H. Loiseleur, Cryst. Struct. Commun., 10, 1129 (1981).

- 236. S. Eirichi, S. Kohei and H. Kensaku, Anal. Sci., 3, 505 (1987); from Chem. Abstr., 108, 178925a (1988).
- 237. G. Ferguson, A. Craig, D. Parker and K.E. Matthes, Acta Crystallogr., Sect. C, 45, 741 (1989).
- H.M. Colquhoun, T.J. Greenhough and M.G.H. Wallbridge, J. Chem. Soc., Chem. Commun., 192 (1980).
- 239. S.M. Nelson, S.G. McFall, M.G.B. Drew and A.H. bin Othman, J. Chem. Soc., Chem. Commun., 370 (1977).
- 240. I.H. Suh, K. Aoki and H. Yamazaki, Inorg. Chem., 28, 358 (1989).
- 241. W. Masanori, T. Keisi, K. Kazuhisa, E. Tatsuo, I. Shinji, T. Yoshihiro and T. Tomitake, *Chem. Express*, 6, 301 (1991) 301; from *Chem. Abstr.*, 115, 104675h (1991).
- 242. S.H. Strauss, M.D. Noirot and O.P. Anderson, Inorg. Chem., 24, 4307 (1985).
- 243. C.A. Maier and I.C. Paul, J. Chem. Soc., Chem. Commun., 181 (1971).
- 244. R.J. McClure, G.A. Sim, P. Coggon and A.T. McPhail, J. Chem. Soc., Chem. Commun., 128 (1970); P. Coggon, A.T. McPhail and G.A. Sim, J. Chem. Soc. B, 1024 (1970).
- E.M. Meyer, S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, Organometallics, 8, 1067 (1989).
- 246. C.M. Che, H.K. Yip, D. Li, S.M. Peng, G.H. Lee, Y.M. Wang and S.T. Liu, J. Chem. Soc., Chem. Commun., 1615 (1991).
- 247. K. Tang, M. Aslam, E. Block, T. Nicholson and J. Zubieta, Inorg. Chem., 26, 1488 (1987).
- 248. A.A.M. Aly, D. Neugebauer, O. Orama, U. Schubert and H. Schmidbauer, Angew. Chem., 90, 125 (1978); U. Schubert, D. Neugebauer and A.A.M. Aly, Z. Anorg. Allg. Chem., 464, 217 (1980).
- D. Franzoni, G. Pelizzi, G. Predieri, P. Tarasconi, F. Vitali and C. Pelizzi, J. Chem. Soc., Dalton Trans., 247 (1989).
- L. Peng, L. Ying, Z. Lansun, Y. Huahui and Z. Qianen, Xiamen Daxue Xuebao Ziran Kexueban, 29, 549 (1990); from Chem. Abstr., 117, 59488c (1992).
- 251. H.H. Murray, R.G. Raptis and J.P. Fackler, Jr., Inorg. Chem., 27, 26 (1988).
- 252. J.P. Charland and A.L. Beauchamp, J. Crystallogr. Spectr. Research, 15, 581 (1985).
- T.M. Garrett, U. Koert, J.M. Lehn, A. Rigault, D. Meyer and J. Fishcer, J. Chem. Soc., Chem. Commun., 557 (1990).
- 254. J. de Mendoza, E. Mesa, J.C. Rodriguez-Ubis, P. Vasquez, F. Vogtle, P.M. Windschief, K. Rissanen, J.M. Lehn, D. Lilienbaum and R. Ziessel, *Angew. Chem. Int. Ed. Engl.*; **30**, 1331 (1991).
- 255. H.W. Roesky, E. Peymann, J. Schimkowiak, M. Moltemeyer, W. Pinkert and G.M. Sheldrick, J. Chem. Soc., Chem. Commun., 981 (1983).
- 256. S. Pinxi, X. Xinkon, W. Honggen, W. Ruji, L. Liwen, W. Wenhu, W. Wenzhen and W. Luton, *Huaxue Xuebao*, **49**, 677 (1991); from *Chem. Abstr.*, **115**, 219484n (1991).
- 257. S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1087 (1983).
- 258. E. Hartmann and J. Strahle, Z. Anorg. Allg. Chem., 583, 31 (1990).
- L.M. Engelhardt, G.E. Jacobsen, W.C. Patalinghug, B.W. Skelton, C.L. Raston and A.H. White, J. Chem. Soc., Dalton Trans., 2859 (1991).
- W. Wojnowski, M. Wojnowski, K. Peters, E.M. Peters and H.G. von Schnering, Z. Anorg. Allg. Chem., 503, 79 (1985).
- 261a.G. Smith, D.S. Sagatys, C.A. Campbell, D.E. Lynch and C.H.L. Kennard, Aust. J. Chem., 43, 1707 (1990).
- 261b.M. Horner, A.G. Pedroso, C. Roberto, M. Peixoto and J. Beck, Z. Naturforsch., 45b, 689 (1990).
- 262. G. Henkel, P. Betz and B. Krebs, Angew. Chem. Int. Ed. Engl., 26, 145 (1987)
- M.G. Kanatzidis and S.P. Huang, Angew. Chem. Int. Ed. Engl., 28, 1513 (1989); S.P. Huang and M.G. Kanatzidis, Inorg. Chem., 30, 1455 (1991).

- 264. E.T. Blues, M.G.B. Drew and B. Fermi-Onadeko, Acta Crystallogr., Sect. B., 33, 3965 (1977).
- 265. G.B. Ansell, J. Chem. Soc. B, 443 (1971).
- 266. L.M. Engelhardt, S. Gotsis, P.C. Healy, J.D. Kildea, B.W. Skelton and A.H. White, Aust. J. Chem., 42, 149 (1989).
- 267. B. Norin and A. Oskarsson, Acta Chem. Scand., Ser. A, 39, 701 (1985).
- 268. P.C. Healy, N.K. Mills and A.H. White, Aust. J. Chem., 36, 1851 (1983).
- 269. M.R. Churchill and B.G. DeBoer, Inorg. Chem., 14, 2502 (1975).
- 270. M.R. Churchill, J. Donahue and F.J. Rotella, Inorg. Chem., 15, 2752 (1976).
- 271. B.K. Teo and J.C. Calabrese, Inorg. Chem., 15, 2474 (1976); J. Amer. Chem. Soc., 97, 1256 (1975).
- 272. B.K. Teo and J.C. Calabrese, Inorg. Chem., 15, 1649 (1976).
- 273. Y. Inoguchi, B. Milewski-Mahrla, D. Neugebauer, P.G. Jones and H. Schmidbaur, Chem. Ber., 116, 1487 (1983).
- 274. J.P. Fackler, Jr., C.A. Lopez, R.J. Staples, S. Wang, R.E.P. Winpenny and R.P. Lattimer, J. Chem. Soc., Chem. Commun., 146 (1992).
- 275. A.F.M.J. van der Ploeg, G. van Koten and A.L. Spek, Inorg. Chem., 18, 1052 (1979).
- 276. H. Schmidbauer, A.A.M. Aly and U. Schubert, Angew. Chem., 90, 905 (1978); Intl. Ed. Eng., 17, 846 (1978).
- 277. M. Hedrich and H. Hartl, Acta Crystallogr., Sect. C, 39, 1649 (1983).
- 278. I. Berzina, O.G. Matyukhina, V.K. Belskij, J. Osaks and Y.A. Benkovskij; Latv. PSR Zinat. Acad. Vestis, Khim. Ser., 18 (1985) 18; from Chem. Abstr., 102, 196778 (1985).
- 279. T. Kaluo, J. Xianglin, X. Yun and T. Youqi, Sci. Sin., Ser. B, 30, 1 (1987); from Chem. Abstr., 108, 123398j (1988).
- 280. T. Kaluo, J. Xianglin, X. Qunong, S. Jianguoang and T. Youqi, Jiegou Huaxue, 7, 245 (1988); from Chem. Abstr., 111, 145733m (1989).
- 281. H. Mingshen, L. Peng, L. Ling, Y. Huahui and L. Lansun, Wuli Huaxue Xuebao, 7, 694 (1991); from Chem. Abstr., 117 61471k (1992).
- 282. P. Gonzalez-Duarte, J. Sola, J. Vives and X. Solans, J. Chem. Soc., Chem. Commun., 1641 (1987).
- 283. G.W. Eastland, M.A. Mazid, D.R. Russell and M.C.R. Symons, J. Chem. Soc., Dalton Trans., 1682 (1980).
- 284. R. Hesse and L. Nelson, Acta Chem. Scand., 23, 825 (1969).
- 285. H. Dietrich, W. Storek and G. Manecke, J. Chem. Soc., Chem. Commun., 1036 (1982). 286. H. Yamaguchi, A. Kido, T. Uechi and K. Yasukouchi, Bull. Chem. Soc. Jpn., 49, 1271 (1976).
- 287. I.G. Dance, L.J. Fitzpatrick and M.L. Scudder, Inorg. Chem., 23, 2276 (1984).
- 288. P. Jennische and R. Hesse, Acta Chem Scand., 25, 423 (1971).
- 289. E. Block, D. Macherone, S.N. Shaikh and J. Zubieta, Polyhedron, 9, 1429 (1990).
- 290. E. Block, M. Gernon, H. Kang and J. Zubieta, Angew. Chem. Int. Ed. Engl., 27, 1342 (1988).
- 291. D. Britton and J.D. Dunitz, Acta Crystallogr., 19, 662 (1965); D. Britton, ibid, Sect. C, 47, 2646 (1991).
- 292. J. Coetzer and M.M. Thackeray, Acta Crystallogr., Sect. B., 31, 2113 (1975).
- 293. T. Kaluo, J. Xianglin, H. Yonglin and T. Youqi, Beijing Daxue Xuebao Ziron Kexueban, 26, 173 (1990); from Chem. Abstr., 115, 221684w (1991).
- 294. K. Tang, Y. Yang, O. Yang and Y. Tang, J. Chem. Soc., Dalton Trans., 2297 (1989).
- 295. E. Block, M. Gernon, H. Kang, G. Ofori-Okai and J. Zubieta, Inorg. Chem., 28, 1263 (1989).
- 296. P.J.M.W.L. Birker and G.C. Verschoor, J. Chem. Soc., Chem. Commun., 322 (1981).
- 297. I.G. Dance, L.J. Fitzpatrick, M.L. Scudder and D.V. Craig, J. Chem. Soc., Chem. Commun., 17 (1984).
- 298. I.G. Dance, L.J. Fitzpatrick, D.C. Craig and M.L. Scudder, Inorg. Chem., 28, 1853 (1989).
- 299. G. Henkel, B. Krebs, P. Betz, H. Fietz and K. Saatkamp, Angew. Chem. Int. Ed. Engl., 27, 1326 (1988).
- 300. T.C.W. Mak, W.H. Yip, C.H.L. Kennard, G. Smith and E.J. O'Reilly, J. Chem. Soc., Dalton Trans., 2353 (1988).
- 301. F. Charbonnier, R. Faure and H. Loiseleur, Rev. Chim. Miner., 18, 245 (1981).
- 302. E. Hartmann and J. Strahle, Z. Naturforsch., 43b, 818 (1988); Z. Kristallogr., 182, 120 (1988).
- 303. C. Kratky, E. Nachbaur and A. Popitsch, Acta Crystallogr., Sect. B., 37, 654 (1981).
- 304. F. Belaj, C. Kratky, E. Nachbaur and A. Popitsch, Monat. Chem., 118, 349 (1987).
- 305. E. Bang, Acta Chem Scand., Ser. A, 32, 555 (1978).
- 306. H. Greschonig, E. Nachbaur and H. Kirschner, Acta Crystallogr., Sect. B., 33, 3595 (1977).

- 307. C. Gagnon and A.L. Beauchamp, Acta Crystallogr., Sect. B., 33, 1448 (1977).
- V.I. Sokel, L.Y. Mevedeva, M.A. Porai-Koshits and J.A. Dozanov, Zh. Neorg. Khim., 35, 2850 (1990).
- 309. D. Britton and Y. Mei Chow, Acta Crystallogr., Sect. B., 33, 697 (1977).
- 310. D. Britton, Acta Crystallogr., Sect. C, 46, 2297 (1990).
- H.W. Roesky, H. Hofmann, J. Schimlowiak, P.G. Jones, K. Meyer-Base and G.M. Sheldrick, Angew. Chem., 97, 403 (1985).
- 312. D. Britton and J.D. Dunitz, Acta Crystallogr., 18, 424 (1965).
- 313. K.M. Adams, M.J. Cooper and M.J. Sole, Acta Crystallogr., 17, 1440 (1964).
- 314. M.L. Capella, C.R. Acad. Sci., Paris, 249, 722 (1959).
- 315. I.C. Waddington, J. Chem. Soc., 2499 (1959).
- 316. T.G. Richmond, E.P. Kelson and A.T. Patton, J. Chem. Soc., Chem. Commun., 96 (1988).
- 317. J. Perron and A.L. Beauchamp, Inorg. Chem., 23, 2853 (1984).
- 318. C. Kratky and A. Popitsch, Acta Crystallogr., Sect. B., 36, 1044 (1980).
- 319. H. Pritzkov, Z. Naturforsch., 31b, 1170 (1976).
- 320. H.M. Maurer and A. Weiss, Z. Kristallogr., 146, 227 (1977).
- 321. F. Charbonnier, R. Faure and H. Loiseleur, J. Less Common Met., 92, 1 (1983).
- 322. H.W. Roesky, M. Thomas, P.G. Jones, W. Pinkert and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., 1211 (1983).
- 323. D. Britton and J.D. Dunitz, Acta Crystallogr., 19, 662 (1965).
- 324. J.C. Barrick, D. Canfield and B.C. Griessen, Acta Crystallogr., Sect. B., 35, 464 (1979).
- 325. K. Singh, Acta Crystallogr., 12, 1053 (1959).
- 326. E.T. Blues, D. Bryce-Smith, H. Hirsch and M.J. Simons, J. Chem. Soc., Chem. Commun., 699 (1970).
- 327. M. Dartiguenave, Y. Dartiguenave, A. Mari, A. Guitard, M.J. Olivier and A.L. Beauchamp, *Can. J. Chem.*, **66**, 2386 (1988).
- 328. B. Morosin and P.J. Nigrey, Acta Crystallogr., Sect. C., 48, 1216 (1992).
- 329. K.J. Range, S. Kuhnel and M. Zabel, Acta Crystallogr., Sect. C, 45, 1419 (1989).
- 330. K.J. Range, M. Zabel, H. Meyer and H. Fischer, Z. Naturforsch., 40b, 1618 (1985).
- 331. P.W.R. Corfield and H.M.M. Shearer, Acta Crystallogr., 20, 502 (1966).
- 332. Y. Kojima, T. Yamashita, Y. Ishino, T. Hirashima and K. Hirotsu, Chem. Letters, 453 (1983).
- 333. I.G. Dance, L.J. Fitzpatrick, A.D. Rae and M.L. Scudder, Inorg. Chem., 22, 3785 (1983).
- 334. S.H. Hong, A. Olin and R. Hesse, Acta Chem. Scand., Ser. A, 29, 583 (1975).
- 335. I.G. Dance, Inorg. Chim. Acta, 25, L17 (1977).
- 336. J.K. Fawcett, V. Kocman, S.C. Nyburg and R.J. O'Brien, J. Chem. Soc., Chem. Commun., 1198 (1969); V. Koeman and J.T. Szymanski, Can. J. Chem., 68, 1606 (1990).
- 337. L. Nunisto and L.O. Larsson, Acta Crystallogr., Sect. B., 29, 623 (1973).
- 338. I. Lindqvist, Acta Crystallogr., 10, 29 (1957).
- 339. D. Britton and J.D. Dunitz, Acta Crystallogr., 19, 815 (1965).
- I. Casals, P. Gonzales-Duarte, J. Sola, J. Vives, M. Font-Bardia and X. Solans, *Polyhedron*, 9, 769 (1990).
- 341a.X.M. Chen and T.C.W. Mak, J. Chem. Soc., Dalton Trans., 3253 (1991).
- 341b.G.W. Hunt, T.C. Lee and E.L. Amma, Inorg. Nucl. Chem. Lett., 10, 909 (1974).
- 342. T.C.W. Mak, W.H. Yip, C.H.L. Kennard, G. Smith and E.J. O'Reilly, Aust. J. Chem., 39, 541 (1986).
- 343. X.M. Chen and T.C.W. Mak, Polyhedron, 10, 1723 (1991).
- 344. J. Konnert and D. Britton, Inorg. Chem., 5, 1193 (1966).
- 345a.B. Noren and A. Oskarsson, Acta Chem Scand., Ser. A, 38, 479 (1984).
- 345b.K. Shelly, D.C. Finster, Y.J. Lee, W.R. Scheidt and C.A. Reed, J. Amer. Chem. Soc., 107, 5955 (1985).
- 346. M. Ghosh, A.K. Basak and S.K. Mazumdar, Acta Crystallogr., Sect. C, 46, 1223 (1990).
- M. Ishikara, S. Ohba, Y. Saito and Y. Shiozaki, Acta Crystallogr., Sect. B., 43, 160 (1987).
 M. Kurmoo, K.L. Pritchard, D.R. Talham, P. Day, A.M. Stringer and J.A.K. Howard, Acta Crystallogr., Sect. B., 46, 348 (1990).
- M.A. Beno, M.A. Firestone, P.C.W. Lung, L.M. Sowa, H.H. Wang and J.M. Williams, Solid State Commun., 57, 735 (1986).
- 350. A.M. Stringer, (1988) PhD. Thesis, University of Bristol, England; from ref. 348.
- W. Geiser, H.H. Wang, J.M. Williams, E.L. Venturini, J.M. Kwak and M.H. Whangbo, Synth. Met., 19, 599 (1987).

- H. Urayama, H. Yamochi, G. Saito, C. Sato, A. Kowamoto, J. Tanaka, T. Mori, Y. Maruyoma and H. Inokuchi, *Chem. Lett.*, 460 (1988).
- 353. C. Gagnon and A.L. Beauchamp, Acta Crystallogr., Sect. B., 33, 1448 (1977).
- 354. N.K. Mills and A.H. White, J. Chem. Soc., Dalton Trans., 229 (1984).
- 355. A. Korczynski, Rocz. Chem., 40, 343 (1966).
- 356. X.M. Chen and T.C.W. Mak, J. Chem. Soc., Dalton Trans., 1219 (1991).
- 357. X.M. Chen and T.C.W. Mak, Aust. J. Chem., 44 1783 (1991).
- 358. J.P. Hazel and R.L. Collin, Acta Crystallogr., Sect. B., 28, 2951 (1972).
- 359. D.M. Barnhart, C.N. Caughlan and M. Ul Haque, Inorg. Chem., 8, 2768 (1969).
- 360. H.W. Roesky, T. Gries, J. Schimkowiak and P.G. Jones, Angew. Chem. Int. Ed. Engl., 25, 84 (1986).
- 361. D. Perreault, M. Drouin, A. Michel and P.D. Harvey, Inorg. Chem., 31, 3688 (1992).
- 362. R. Gleiter, M. Karcher, D. Kratz, M.L. Ziegler and B. Nuber, Chem. Ber., 123, 1461 (1990).
- 363. G. Helgesson and S. Jagner, Acta Crystallogr., Sect. C, 44, 2059 (1988).
- 364. G. Helgesson, M. Josefsson and S. Jagner, Acta Crystallogr., Sect. C, 44, 1729 (1988).
- 365. N.K. Mills and A.H. White, J. Chem. Soc., Dalton Trans., 225 (1984).
- 366. T. Kaluo, J. Xianglin, X. Qunong and T. Yougi, *Jiegou Huaxue*, 7, 159 (1988); from *Chem. Abstr.*, **109**, 141495w (1988).
- 367. H. Anacker-Eroff, R. Hesse, P. Jennische and A. Wahlberg, Acta Chem. Scand., Ser. A, 36, 251 (1982).
- 368a.N. Galesic, M. Herceg and D. Sevdic, Acta Crystallogr., Sect. C, 44, 1405 (1988).
- 368b.I. Lindqvist and B. Strondberg, Acta Crystallogr., 10, 173 (1957).
- 369. J.D. Kildea and A.H. White, Inorg. Chem., 23, 3825 (1984).
- 370. S. Jagner, S. Olson and R. Stromberg, Acta Chem. Scand., Ser. A, 40, 230 (1986).
- 371. K. Peters, H.G. van Schnering, W. Ott and H.M. Seidenspinner, Acta Crystallogr., Sect. C, 40, 789 (1984).
- 372. S. Geller and T.O. Dudley, J. Solid State Chem., 26, 321 (1978).
- 373. J.D. Kildea, B.W. Skelton and A.H. White, Aust. J. Chem., 39, 171 (1986).
- 374. H.J. Meyer, Acta Crystallogr., 16, 788 (1963).
- 375. C.J. Gilmore, P.A. Tucker, S.F. Watkins and P. Woodward, J. Chem. Soc., Chem. Commun., 1006 (1969); C.J. Gilmore, P.A. Tucker and P. Woodward, J. Chem. Soc., A, 1337 (1971).
- 376. G.A. Bowmaker, Effendy, J.D. Kildea, B.W. Skelton and A.H. White, *Aust. J. Chem.*, **43**, 2113 (1990).
- 377. R.K. Chadba, Inorg. Chem., 27, 1507 (1988).
- 378. J. Coetzer, Acta Crystallogr., Sect. B., 31, 2115 (1975).
- 379. J. Coetzer, Acta Crystallogr., Sect. B., 31, 622 (1975).
- 380. M.M. Thackeray and J. Coetzer, Acta Crystallogr., Sect. B., 32, 2966 (1976).
- 381. M.M. Thackeray and J. Coetzer, Acta Crystallogr., Sect. B., 34, 71 (1978).
- 382. S. Geller and B.B. Owens, J. Phys. Chem. Solids, 33, 1241 (1972).
- 383. M. Hedrich and H. Hartl, Acta Crystallogr., Sect. C, 39, 533 (1983).
- 384. N.C. Baenziger, C.L. Fox, Jr. and S.L. Modak, Acta Crystallogr., Sect. C, 42, 1505 (1986).
- 385. G.A.P. Dalgaard, A.C. Hazell and R.G. Hazell, Acta Crystallogr., Sect. B., 30, 2721 (1974).
- 386. L.G. Marzilli, T.J. Kistenmacher and M. Rossi, J. Amer. Chem. Soc., 99, 2797 (1977).
- 387. W.H. Chan, T.C.W. Mak, W.H. Yip, C.H.L. Kennard, G. Smith and E.J. O'Reilly, Aust. J. Chem., 40, 1161 (1987).
- 388. R.A. Stein and C. Knobler, Inorg. Chem., 16, 242 (1977).
- 389. D.S. Cook and M.F. Turner, J. Chem. Soc., Perkin II, 1021 (1975).
- 390. N.C. Baenziger and A.W. Struss, Inorg. Chem., 15, 1807 (1976).
- 391. Y.M. Chow and D. Britton, Acta Crystallogr., Sect. B., 30, 1117 (1974).
- A. Guitard, A. Mari, A.L. Beauchamp, Y. Dartiguenave and M. Dartiguenave, *Inorg. Chem.*, 22, 1603 (1983).
- A. Domenicano, L. Scaramuzza, A. Vaciago, R.S. Ashworth and C.K. Prout, J. Chem. Soc., A, 866 (1968).
- 394. R.S. Ashworth, C.K. Prout, A. Domenicano and A. Vaciago, J. Chem. Soc., A, 93 (1968).
- 395. L. Cavalca, A. Mangia, C. Palmieri and G. Pelizzi, Inorg. Chim. Acta, 4, 299 (1970).
- 396. J.L. Wang, M. Sun, F.M. Miao, S. Yu, F.S. Gong and X.H. Duan, Acta Crystallogr., Sect. C, 47, 2203 (1991).
- L.C. Capacchi, G.F. Gasparri, M. Ferrari and M. Nardelli, J. Chem. Soc., Chem. Commun., 910 (1968).

- 398. D.L. Smith, J.E. Maskarsky and L.R. Spaulding, J. Appl. Cryst., 15, 488 (1982).
- 399. E.A. Vizzini and E.L. Amma, J. Amer. Chem. Soc., 88, 2872 (1966).
- 400. L.C. Capacchi, G.F. Gasparri, M. Ferrari and M. Nardelli, Ricierca Sci., 38, 974 (1968).
- 401. M. Nardelli, G.F. Gasparri, G.G. Battistini and A. Musatti, J. Chem. Soc., Chem. Commun., 187 (1965); M. Nardilli, G.F. Gasparri and I. Chierici, Ricierca Sci., Ser. A, 8, 480 (1965); G. Fava Gasparri, A. Mangia, A. Musatti and M. Nardelli, Acta Crystallogr., Sect. B., 24, 367 (1968).
- 402. G.B. Ansell, L.A. Burkardt and W.G. Finnegan, J. Chem. Soc., Chem. Commun., 459 (1969); G.B. Ansell, J. Chem. Soc. B, 443 (1971).
- 403. G.B. Ansell and W. G. Finnegan, J. Chem. Soc., Chem. Commun., 960 (1969); G.B. Ansell, J. Chem. Soc., Perkin II, 104 (1976).
- 404. T.C.W. Mak, Inorg. Chim. Acta, 84, 19 (1984).
- 405. D.S. Cook and M.F. Turner, J. Chem. Soc., Perkin II 1379 (1976).
- 406. Y.M. Chow and D. Britton, Acta Crystallogr., Sect. B., 147 (1974).
- 407. A.M. Arif and T.G. Richmond, J. Chem. Soc., Chem. Commun., 871 (1990).
- 408. C.M. Baenziger, H.L. Haight, R. Alexander and J.R. Doyle, *Inorg. Chem.*, 5, 1399 (1966); R.E. Marsh and F.H. Herbstein, *Acta Crystallogr., Sect. B.*, 39, 280 (1983).
- 409. I.F. Taylor, Jr., E.A. Hall and E.L. Amma, J. Amer. Chem. Soc., 91, 5745 (1969).
- 410. R.C. De Lanson, Z.H. Hsieh, C.O. Quicksall and M.K. Sun, J. Org. Chem., 49, 2478 (1984).
- 411. C.N. Caughlan, J.D. Smith, P.W. Jennings and G.E. Voecks, Acta Crystallogr., Sect. B., 32, 1390 (1976).
- D.J. Robinson and C.H.L. Kennard, J. Chem. Soc., Chem. Commun., 914 (1968); J. Chem Soc. B, 965 (1970).
- 413. P.C. Healy, J.D. Kildea and A.H. White, Aust. J. Chem., 41, 417 (1988).
- 414. A.J. Arduengo, H.V. Rasika Dias and J.C. Calabrese, J. Amer. Chem. Soc., 30, 4880 (1991).
- 415. J.F. Modder, G. von Koten, K. Vrieze and A.L. Spek, Angew. Chew. Int. Ed. Engl., 28, 1698 (1989).
- 416. W.G. Haanstra, W.L. Driessen, M. von Roon, A.L.E. Stoffels and J. Reedijk, J. Chem. Soc., Dalton Trans., 481 (1992).
- 417. C. Panattoni and E. Frasson, Acta Crystallogr., 16, 1258 (1963).
- 418. J.M. Salas, M.P. Sanchez, E. Colacio and R. Fauri, J. Crystallogr. Spectrosc. Res., 20, 133 (1990).
- 419. Y.A. Simonov, M.D. Mazus, S.T. Melinovskij, S.E. Levchenko, S.V. Pavlova and L.I. Budarin, Kristallografiya, 32 93 (1987); from Chem. Abstr., 106, 166633r (1987).
- 420. J.A.W. Dalziel and T.G. Hewitt, J. Chem. Soc. A, 234 (1966).
- 421. P.Y. Zavalii and Y.M. Prots, Kristallografiya, 32, 343 (1987); from Chem. Abstr., 107, 124893r (1987).
- 422. V.V. Davydov, V.I. Sokol, M.A. Porai-Koshits, B.E. Zajcev, V.A. Belanosov and E.V. Balebanova, Koord. Khim., 17, 976 (1991).
- 423. J. Xianglin, Z. Gongdu, W. Miamzu, T. Youqi and H. Haochuan, Huaxue Xuebao, 48, 232 (1990); from Chem. Abstr., 113, 88547u (1990).
- 424. I. Rencken, J.C.A. Boeyens and S.W. Orchard, J. Crystallogr. Spectrosc. Res., 18, 293 (1988).
- 425. L.L. Shewchenko and L.P. Panasyuk, Ukr. Khim. Zh., 53, 1137 (1987); from Chem. Abstr., 108, 229953j (1988).
- 426. F. Charbonnier, R. Faure and H. Loiseleur, J. Appl. Cryst., 8, 694 (1975); Acta Crystallogr., Sect. B, 33, 2824 (1977).
- 427. N.O. Bjork and A. Cassel, Acta Chem. Scand., Ser. A, 30, 235 (1976).
- 428. F. Charbonnier, R. Faure and H. Loiseleur, Acta Crystallogr., Sect. B., 37, 822 (1981).
- 429. F. Charbonnier, R. Faure and H. Loiseleur, Acta Crystallogr., Sect. B., 35, 1773 (1979).
- 430. D.A. Grossie and W.H. Watson, Acta Crystallogr., Sect. C, 45, 1998 (1989).
- 431. F. Belaj, C. Kratky, E. Nachbaur and A. Popitsch, Monat. Chem., 118, 19 (1987).
- 432. J.S. McKechnie and I.C. Paul, J. Chem. Soc., Chem. Commun., 44 (1968); J. Chem. Soc. B, 1445
- (1968).
 433. P.J. Reddy, V. Ravichandran, K.K. Chacko, E. Weber and W. Saenger, *Acta Crystallogr., Sect. C*, 45, 1871 (1989).
- 434. C. Ruiz-Valero, A. Monga, E. Gutierrez-Puebla and E. Gutierrez-Rios, Acta Crystallogr., Sect. C, 39, 1214 (1983).
- 435. R.B. Jackson and W.E. Streib, J. Amer. Chem. Soc., 89, 2539 (1967).
- 436. E.A. Hall Griffith and E.L. Amma, J. Amer. Chem. Soc., 96, 743 (1974); ibid, 91, 6538 (1969).
- 437. E.A. Hall Griffith and E.L. Amma, J. Amer. Chem. Soc., 96, 5407 (1974).

- 438. M.K. Cooper, R.S. Nyholm, R.W. Carreck and M. McPartlin, J. Chem. Soc., Chem. Commun. 343 (1974).
- 439. H. Schmidbaur, W. Bublak, M.W. Haenel, B. Huber and G. Muller, Z. Naturforsch., 43b, 702 (1988).
- 440. Y. Tor, J. Libman, F. Frolow, H.E. Gottlieb, R. Lazar and A. Shanzer, J. Org. Chem., 50, 5476 (1985).
- 441. A. Michelet, B. Viossat, P. Khodadad and N. Rodier, Acta Crystallogr., Sect. B., 37, 2171 (1981).
- 442. A. Yuchi, M. Shiro, H. Wada and G. Nakagawa, Bull. Chem. Soc. Jap., 65, 2275 (1992).
- 443. R.L. Griffith, J. Chem. Phys., 11, 499 (1943).
- 444. R.J. Prosen and K.N. Trueblood, Acta Crystallogr., 9, 741 (1956).
- 445. S. Hodorowicz and B. Borzecka, Phys. Stat. Solid (a), 57, 801 (1980).
- 446. E. Benedetti, A. Bavoso, B. diBlasio, V. Pavone, C. Pedone and F. Rossi, Inorg. Chim. Acta, 116, 31 (1986).
- 447. P.G. Jones, H.W. Roesky, J. Liebermann and G.M. Sheldrick, Z. Naturforsch, 39b, 1729 (1984).
- 448. J.C. Barnes and J.D. Paton, Acta Crystallogr., Sect. C, 40, 72 (1984).
- 449. R.G. Vianka and E.L. Amma, Inorg. Chem., 5, 1020 (1966).
- 450. G.W. Bushnell and M.A. Khan, Can. J. Chem., 50, 315 (1972).
- 451. R. Wiest and R. Weiss, J. Chem. Soc., Chem. Commun., 678 (1973).
- 452. G. Valle and R. Ettori, J. Chem. Soc., Dalton Trans., 453 (1983).
- 453. F. Charbonnier, R. Faure and H. Loiseleur, Acta Crystallogr., Sect. B., 34, 3598 (1978).
- 454. J.C. Barnes and C.S. Blyth, Inorg. Chim. Acta, 98, 181 (1985). 455. R.E. Rundle and J.H. Goring, J. Amer. Chem. Soc., 72, 5337 (1950); H.G. Smith and R.E. Rundle, ibid, 80, 5075 (1958).
- 456. F.S. Mathews and W.N. Lipscomb, J. Phys. Chem., 63, 845 (1959).
- 457. W.C. Ho and T.C.W. Mak, J. Organometal. Chem., 241, 131 (1983).
- 458. P.A. Krasutskii, A.G. Yurchenko, V.N. Rodionov, M.Y. Antipin and Y.T. Struchkov, Teor. Eksperim, Khim., 19, 685 (1983).
- 459. P.F. Rodesiler and E.L. Amma, Inorg. Chem., 11, 388 (1972).
- 460. M.L. Campbell and N.K. Dalley, Acta Crystallogr., Sect. B., 37, 1750 (1981); M.L. Campbell, N.K. Dalley, R.M. Izatt and J.D. Lamb, Acta Crystallogr., Sect. B., 37, 1664 (1981).
- 461. C.S. Gibbons and J. Trotter, J. Chem. Soc. A, 2058 (1971).
- 462. T.C.W. Mak, J. Organometal. Chem., 246, 331 (1983).
- 463. T.C.W. Mak, W.C. Ho and N.Z. Huang, J. Organometal. Chem., 251, 413 (1983).
- 464. M. Bilayet Hossain and D. van der Helm, J. Amer. Chem. Soc., 90, 6607 (1968).
- 465. V. Vand, A. Aitken and R.K. Campbell, Acta Crystallogr., 2, 398 (1949).
- 466. D.M. Chackraburtty, Acta Crystallogr., 10, 128 (1954).
- 467. J. Scanlon and R.L. Collin, Acta Crystallogr., 7, 781 (1954).
- 468. M. Melnik and D. Cozak, Rev. Inorg. Chem., 8, 221 (1986).
- 469. D. Cozak and M. Melnik, Coord. Chem. Rev., 74, 53 (1986).
- 470. C.E. Holloway, I.M. Walker and M. Melnik, Rev. Inorg. Chem., 8, 169 (1986).
- 471. C.E. Holloway and M. Melnik, J. Organometal. Chem., 321, 143 (1987).
- 472. C.E. Holloway, I.M. Walker and M. Melnik, Rev. Inorg. Chem., 9, 153 (1988).
- 473. C.E. Holloway and M. Melnik, Rev. Inorg. Chem., 7, 75 (1985).
- 474. C.E. Holloway and M. Melnik, Rev. Inorg. Chem., 7, 161 (1985). 475. C.E. Holloway and M. Melnik, Rev. Inorg. Chem., 7, 1 (1985).
- 476. C.E. Holloway and M. Melnik, J. Organometal. Chem., 303, 1 (1986).
- 477. C.E. Holloway and M. Melnik, J. Organometal. Chem., 303, 39 (1986).
- 478. C.E. Holloway and M. Melnik, J. Organometal. Chem., 304, 41 (1986).
- 479. C.E. Holloway and M. Melnik, J. Organometal. Chem., 396, 129 (1990)
- 480. C.E. Holloway and M. Melnik, J. Organometal. Chem. Lib., 20, 249 (1988).
- 481. C.E. Holloway and M. Melnik, Rev. Inorg. Chem., 10, 235 (1989).
- 482. M. Melnik and J. van Lier, Coord. Chem. Rev., 77, 275 (1987).
- 483. C.E. Holloway, W.A Nevin and M. Melnik, J. Coord. Chem., 31, 191 (1994).